Category Archives: electronics

Bio-elektronica: de medicijnen van de toekomst

New Book: Analog IC Design Techniques for Nanopower Biomedical Signal Processing

41LufUQMnzLChutham Sawigun (Mahanakorn University of Technology, Thailand) and Wouter Serdijn (Delft University of Technology) published a new textbook on Analog IC Design Techniques for Nanopower Biomedical Signal Processing with River Publishers.

  • The River Publishers Series in Biomedical Engineering 
  • ISBN: 9788793379299
  • eBook ISBN: 9788793379282
  • Price : € 80.00
  • Available:  May 2016
Description:

As the requirements for low power consumption and very small physical dimensions in portable, wearable and implantable medical devices are calling for integrated circuit design techniques using MOSFETs operating in the subthreshold regime, this book first revisits some well-known circuit techniques that use CMOS devices biased in subthreshold in order to establish nanopower integrated circuit designs.

Based on the these findings, this book shows the development of a class-AB current-mode sample-and-hold circuit with an order of magnitude improvement in its figure of merit compared to other state-of-the-art designs. Also, the concepts and design procedures of 1) single-branch filters 2) follower-integrator-based lowpass filters and 3) modular transconductance reduction techniques for very low frequency filters are presented. Finally, to serve the requirement of a very large signal swing in an energy-based action potential detector, a nanopower class-AB current-mode analog multiplier is designed to handle input current amplitudes of more than 10 times the bias current of the multiplier circuit. The invented filter circuits have been fabricated in a standard 0.18 µ CMOS process in order to verify our circuit concepts and design procedures. Their experimental results are reported.

 

Keywords:

Analog integrated circuit, Biomedical electronics, Bionic ear, Bio-potential, CMOS, Current-mode, Cochlear implant, ECG, Filter, Gm-C, Multiplier, Neural recording, Sample-and-hold, Signal processing, Subthreshold, Switched-current, Transconductance reduction, Transconductor, Weak inversion

Multistage Complex-Impedance Matching Network Analysis and Optimization

RFEHBy Gustavo C. Martins and Wouter A. Serdijn

Some systems like RF energy harvesters have power transfer efficiency as one of the most important specifications. Therefore, the efficiency of the matching network, which affects the entire system’s efficiency, plays an important role. When the impedance transformation factor between the antenna and its load is high, the matching network efficiency is decreased. In this paper we present the efficiency analysis and optimization of multistage matching networks at a single frequency using lumped components. Considering complex source and load impedances at each stage of the network, we show that it is possible to obtain better results than prior art.

Published in: IEEE Transactions on Circuits and Systems II: Express Briefs. Date of publication: 25 februari 2016.

DOI: 10.1109/TCSII.2016.2534738

Read the full article here:

https://www.researchgate.net/publication/296480040_Multistage_Complex-Impedance_Matching_Network_Analysis_and_Optimization

Living better with electroceuticals

Beter worden met ‘electroceutica’by Harry Baggen, in Elektor Magazine, 30 maart 2016, 15:03

Electroceuticals can help combat a wide variety of medical conditions, such as tinnitus (ringing ears) and epilepsy. Electroceuticals comprise the smart, localized and targeted application of therapeutic electrical stimuli to the body. The technological challenge is to make electroceutical devices smarter and smaller.

According to Wouter Serdijn, Professor of Bio-Electronics at TU Delft in the Netherlands, electroceuticals could develop into a new and significant form of medicine, complementing existing pharmaceuticals. The targeted application of electrical stimuli can alleviate many medical conditions and is not limited to brain therapy. The main advantage of electroceuticals over pharmaceuticals is that the effect is localized. Drug act on the entire body, which can easily lead to adverse effects.

Existing electroceutical devices are still fairly bulky, with relatively large batteries and wires. There is also a high degree of trial and error in treatment methods. The aim is to develop a flexible brain implant on a polymer substrate that can serve as a general platform for various electroceutical devices.

Besser heilen mit „Electroceutica“

Electroceutica können helfen, verschiedene Erkrankungen wie Tinitus (Ohrpfeifen) oder Epilepsie zu lindern. Electroceutica bedeuten die intelligente, lokale und gezielte Verabreichung heilender elektrischer Impulse in den Körper. Die technische Herausforderung ist, die dafür erforderlichen Geräte kleiner und intelligenter zu machen.

Nach Wouter Serdijn, Professor für Bio-Elektronik an der niederländischen Technischen Universität Delft, können Electroceutica zu einem neuen bedeutenden medizinischen Mittel statt oder als Zusatz zur bestehenden Pharmazeutik werden. Die gezielte Anwendung elektrischer Impulse kann bei vielen Erkrankungen helfen, nicht nur bei solchen des Gehirns. Der große Vorteil der elektrischen Methode gegenüber der pharmazeutischen ist, dass sie lokal begrenzt sind: Pillen wirken auf den ganzen Körper ein und haben deswegen oft gravierende Nebenwirkungen.

Zurzeit ist die Verabreichung elektrischer Impulse an den Körper noch recht grobschlächtig mit relativ großen Batterien und Kabeln. Zudem funktioniert diese Methode noch in einem hohen Maß nach dem „Trial-and-error“-Prinzip. Das Ziel ist es, ein flexibles Hirnimplantat auf einem Polymersubstrat zu entwickeln, das zur allgemeinen Grundlage diverser Implantattypen werden kann.

Beter worden met ‘electroceutica’

Electroceutica kunnen helpen om allerlei aandoeningen zoals tinnitus (oorsuizen) en epilepsie te bestrijden. Electroceutica betreft het slim, lokaal en gericht toedienen van helende elektrische pulsen aan het lichaam. De technische uitdaging is het slimmer en kleiner maken van de benodigde apparatuur.

Volgens prof. Wouter Serdijn, hoogleraar bio-elektronica aan de TU Delft, kunnen ‘electroceutica’ uitgroeien tot een nieuw en belangrijk type medicijn, naast en als aanvulling op de al bestaande farmaceutica. Het gericht geven van elektrische pulsen kan bij veel aandoeningen helpen, en is niet alleen toepasbaar in de hersenen. Het grote voordeel van de elektrische methode boven farmaceutica is dat het effect lokaal is. Pillen werken in op het hele lichaam en veroorzaken derhalve snel bijwerkingen.

Op dit moment is het toedienen van elektrische pulsen aan het lichaam nog vrij grofstoffelijk, met bijvoorbeeld relatief grote batterijen en draden. Ook heeft de methode nog een vrij hoge graad van trial and error. Het streven is om een flexibel hersenimplantaat te ontwikkelen op een polymeer-substraat dat dan kan dienen als algemeen platform voor diverse typen implantaten.

Elektroceutica: elektronische medicijnimplantaten voor in je hoofd

Epilepsie, tinnitus en alcoholverslaving zijn misschien verschillend, de behandeling kan erg op elkaar lijken. En wel met elektrische medicijnen die je in je hoofd geïmplanteerd krijgt.

Hoogleraar bio-elektronica Wouter Serdijn houdt morgen zijn intree-rede over electroceutica aan de TU Delft. Het woord stamt af van het Engelse ‘electroceuticals’, de elektronische tegenhanger van de ‘pharmaceuticals’, medicijnen dus. Maar dan met een batterijtje erin die de patiënt als implantaat krijgt, meestal in de hersenen.

“Een bekende ziekte is Parkinson. Dan ontstaan tremoren. Die kun je onderdrukken met kleine, elektrische pulsjes. In de arm kun je het ook behandelen, maar dan behandel je de oorzaak niet, zegt Serdijn. “Vaak gaan tremoren gepaard met de aansturing van heel veel verschillende spieren. Dan zou je iemand moeten behangen met elektronica om de plaats waarop het zich openbaart de symptomen te onderdrukken.”

In de toekomst hoopt Serdijn de implantaten kleiner, draadloos en slimmer te maken: “Dat ze echt luisteren naar wat de patiënt nodig heeft”, legt Serdijn uit.

Klik hier voor de link naar het item op BNR Nieuwsradio: http://www.bnr.nl/?service=player&type=archief&fragment=20160330065325240

Slimme stroomstootjes als medicijn

Kleine, draadloze en intelligente implantaten die werken als elektronisch medicijn, dat is de droom van Wouter Serdijn. Serdijn hield deze week aan de TU Delft zijn intreerede als hoogleraar bio-electronica. Hij noemt zulke implantaten ‘electroceuticals’, als tegenhanger van de ‘farmaceuticals’, ofwel pilletjes. Het idee is eenvoudig: waar pilletjes de biochemische activiteit van lichaamscellen veranderen, veranderen electroceuticals de elektrische activiteit.

De moleculen uit een pilletje komen via de bloedbaan in het hele lichaam terecht. De effecten treden niet direct op, zijn niet lokaal en ook niet meteen omkeerbaar. Bovendien hebben pilletjes vaak ongewenste bijeffecten. Maar eeuwenlang was er geen andere mogelijkheid.

Micro-electronica heeft hier verandering in gebracht. Zo kunnen sinds een jaar of tien patiënten met ernstige Parkinson of depressie behandeld worden met een hersenimplantaat dat lokaal in de hersenen elektrische pulsjes genereert. ‘Deze implantaten hebben echter flink wat nadelen’, vertelt Serdijn een dag voor zijn oratie. ‘Ze zijn groot en hebben ook nog eens een grote batterij nodig, typisch iets van zes bij vier bij één centimeter. De batterij wordt nu nog in de borstkas aangebracht. Via draadjes loopt de stroom naar het implantaat in de hersenen. Die draadjes zitten eigenlijk in de weg. Een ander nadeel is dat het implantaat zelf dom is. Arts en de patiënt moeten samen de beste instelling zien te ontdekken. Maar dat is vaak moeilijk en subjectief.’

Chips met een luisterend oor

Serdijn ontwikkelt microchips voor implantaten die niet alleen klein en draadloos zijn, maar ook intelligent: ‘Onze chips zijn slechts twee bij twee millimeter groot, vooral doordat we de pulsgenerator veel kleiner hebben kunnen maken. Ze verbruiken veel minder stroom en daardoor volstaat een kleinere batterij. Bovendien is de batterij oplaadbaar. Ik stel me voor dat deze in de toekomst draadloos wordt opgeladen door een spoel in een intelligent kussen, terwijl de patiënt ligt te slapen.’

Nieuw is dat de chip lokaal luistert naar de therapeutische behoefte en daarop zijn gegenereerde pulsen afstemt. Serdijn geeft het voorbeeld van de behandeling van oorsuizen: ‘Bij sommige patiënten onderdrukken elektrische pulsen de klachten. Nu gebeurt die behandeling nog subjectief. De patiënt moet zelf aangeven wat hij hoort en of er verlichting is opgetreden. Een slim implantaat meet het signaal op de gehoorschors, genereert elektrische pulsjes en meet tegelijkertijd hoe goed het effect is. Idealiter werkt het implantaat alleen op de momenten dat het nodig is en in de hoeveelheid die nodig is. Het implantaat denkt als het ware mee. Electroceuticals houden automatisch rekening met het feit dat ieder mens anders is en dat de toestand van een persoon in de tijd verandert.’

Fijnregelen met schokjes

Behandeling met slimme stroomstootjes hebben de eerste positieve resultaten opgeleverd in de behandeling van epilepsie bij muizen. Serdijn werkt ook samen met de Belgische hoogleraar neurowetenschappen Dirk de Ridder in de behandeling van alcoholverslaving. De implantaten hoeven ook niet beperkt te blijven tot de hersenen, zegt Serdijn. ‘Elk weefsel dat gevoelig is voor elektriciteit, dus ook spieren en organen, kun je met electroceuticals beïnvloeden. Een paar jaar geleden is bijvoorbeeld aangetoond dat elektrische stimulatie ook een aandoening als reuma kan onderdrukken.’

Serdijn ziet electroceutica niet als vervangers van de klassieke farmaceutica, maar als aanvulling. ‘Electroceutica zijn vooral geschikt voor aandoeningen die hun oorsprong op een specifieke plek vinden. Met farmaceutica kun je als het ware de biochemische basiswaarde van het lichaam veranderen en daarna kun je heel lokaal met electroceutica de boel fijnregelen.’

Op dit moment zit het onderzoek naar electroceutica nog in de fase van dierproeven. ‘Voordat hier goedgekeurde behandelingen voor mensen uit komen, zijn we jaren verder’, besluit Serdijn.

Bennie Mols vertelde ook over dit onderwerp in het radioprogramma De Ochtend: Stroomstootjes in plaats van pillen

Beter worden met ‘electroceutica’

Electroceutica kunnen helpen om allerlei aandoeningen, zoals tinnitus (oorsuizen) en epilepsie, te bestrijden. Dat zegt prof. Wouter Serdijn in zijn intreerede als hoogleraar bio-elektronica aan de TU Delft op woensdag 30 maart. Electroceutica betreft het slim, lokaal en gericht toedienen van helende elektrische pulsen aan het lichaam. De technische uitdaging is het slimmer en kleiner maken van de apparatuur.

Minder bijwerkingen

Volgens prof. Wouter Serdijn kunnen ‘electroceutica’ uitgroeien tot een nieuw en belangrijk type medicijn, naast en als aanvulling op de al bestaande farmaceutica. Werken farmaceutica op een chemische wijze in op het lichaam, electroceutica doen dit op een elektrische manier.
Electroceutica dienen helende elektrische pulsen aan het lichaam toe op een slimme en gerichte wijze, vooral voor aandoeningen die hun oorsprong vinden op specifieke plaatsen, in bijvoorbeeld de hersenen.Het gericht geven van elektrische pulsen kan bij veel aandoeningen helpen, en is zeker niet alleen toepasbaar in de hersenen. Het grote voordeel van de elektrische methode boven farmaceutica is dat het effect lokaal is. Pillen werken immers in op het hele lichaam en veroorzaken derhalve snel bijwerkingen.

Slimmer en kleiner

Serdijn ziet electroceutica nadrukkelijk als aanvulling op ‘gewone’ medicijnen. ‘Het gaat om het vinden van de perfecte combinatie  tussen electroceuticals en conventionele medicatie. Op dit moment is het toedienen van elektrische pulsen aan het lichaam nog vrij grofstoffelijk, met bijvoorbeeld relatief grote batterijen en draden. Ook heeft de methode nog een vrij hoge graad van trial and error.’

Een chip in zijn meet-behuizing voor het uitlezen van de neurale signalen tijdens en direct na het elektrisch stimuleren, door Cees-Jeroen Bes, in samenwerking met LUMC-KNO. Ondersteund door STW, TMSi, AB-Sys and HealthTech.

Er zijn daarom twee technische hoofddoelen, zegt Serdijn. ‘De uitdaging is het kleiner (dus ook makkelijker implanteerbaar) én slimmer maken van de apparatuur. Dat slimmere zit hem vooral in het meten van de toestand van en het aanpassen van de therapie aan een individuele patiënt. Dit patiënt-specifieke element is heel belangrijk. Want niet alleen is iedere patiënt anders, de toestand van iedere individuele patiënt varieert ook nog eens in de tijd. Door dit te meten en terug te koppelen kunnen we veel gerichter de juiste therapie instellen.’

Concreet is het doel om een flexibel hersenimplantaat te ontwikkelen op een polymeer-substraat. Dat implantaat dient dan als algemeen platform voor diverse typen implantaten.

Tinnitus

Volgens Serdijn is het (potentiële) toepassingsgebied van electroceutica zeer breed. ‘Het kan bijvoorbeeld worden ingezet voor de behandeling van onder meer tinnitus (oorsuizen), epilepsie, het syndroom van Tourette en bepaalde verslavingen. Op deze gebieden worden nu ook al successen geboekt.’
‘Neem tinnitus als voorbeeld. Wereldwijd hebben meer dan 500 miljoen mensen hier last van. Sommige patiënten kunnen worden geholpen via elektrische pulsen. Nu gebeurt die behandeling nog subjectief’, zegt Serdijn. ‘De patiënt moet zelf aangeven wat hij hoort en of er enige verlichting als gevolg van de stimulatie is opgetreden. Intelligente electroceuticals kunnen de doelmatigheid van de toegepaste therapie continu monitoren en deze aanpassen aan de behoeften van de patiënt, zelfs wanneer deze alweer op de terugweg is van het ziekenhuis.’

Symposium

Uiteraard vinden de technische ontwikkelingen plaats in nauwe samenwerking met artsen. Dit komt ook tot uiting in het symposium dat op de dag van de intreerede van Serdijn wordt gehouden. Medical Delta partners ErasmusMC en LUMC zijn goed vertegenwoordigd in het programma. Tijdens het symposium wordt bio-elektronica besproken vanuit een technologisch, een medisch, een klinisch, een industrieel en een maatschappelijk perspectief. Vijf vooraanstaande sprekers van het ErasmusMC, het LUMC, de Dunedin School of Medicine en een biomedisch bedrijf behandelen deze thema’s.
Meer informatie
Het symposium en de intreerede van prof. Serdijn.
Contact
Wouter Serdijn, prof. bio-elektronica TU Delft, W.A.Serdijn@tudelft.nl, +31 (0)15 278 1715.
Claire Hallewas, persvoorlichter TU Delft, c.r.hallewas@tudelft.nl, +31 (0)6 4095 3085.

Intuitive CMOS transistor modeling

On Oct. 6, 2015, I gave a guest lecture in the lecture series “Structured Electronic Design” (EE4C09) on Intuitive CMOS Transistor Modeling. In there I explain the 5 regions of operation of an MOS transistor (both in weak inversion and in strong inversion, both in triode and saturation, and off), based on the EKV model. For those of you that might still be struggling with understanding how the CMOS transistor works and how it can be employed in first time right, first time best analog and mixed signal circuit design, this lecture is for you.
See the complete lecture, which also treats double loop negative feedback amplifiers, herehttps://collegerama.tudelft.nl/Mediasite/Play/d2fc417f2e644a64b4463e34322f86a31d?catalog=528e5b24-a2fc-4def-870e-65bd84b28a8c

Neural stimulation: design of efficient and safe neural stimulators

Article by Marijn van Dongen on efficient and safe neurostimulation

Article by Marijn van Dongen, honorary aluminus of the Bioelectronics Group, in Maxwell 18.3, the quarterly magazine of the Electrotechnische Vereeniging, on the work he did for his PhD studies on power efficient and safe neurostimulation.

Read the entire article here: http://elca.et.tudelft.nl/~wout/tmp/neurostimulation_maxwell_18.3_vandongen.pdf

Lecture on Electroceuticals: getting better with electricity

Lecture on Electroceuticals: getting better with electricity

Lecture on Electroceuticals: getting better with electricity

On May 6, 2015, Collegerama of TU Delft made video recordings of the lecture I gave on Electroceuticals.

Electroceuticals are the electronic counterparts of pharmaceuticals and are miniature electronic devices that interact with the body in an electrical fashion.

In this talk I discuss: neurostimulation and the need to make neurostimulators smaller, more power efficient and more intelligent; optogenetic neuromodulation and the need to make this new neuromodulation modality operate in a closed-loop fashion; neurosensing devices to make neurostimulators intelligent and thereby adjust themselves to the therapeutical needs of the patient; autonomous wireless sensor nodes that can measure temperature or the electrocardiogram without the need for a battery; an outlook into the future of electroceuticals with the promise to treat a larger variety of neurological and brain disorders better.

Click here to start watching the video and slides:

https://collegerama.tudelft.nl/Mediasite/Play/cc7888beb88349c1a60c1414476b577a1d?catalog=528e5b24-a2fc-4def-870e-65bd84b28a8c