Category Archives: cochlear implants

Link

Voor een ingenieur is het prima te begrijpen wat er in de hersenen gebeurt

Auteur: Pieter Edelman

Bits & Chips, d. 14 oktober 2016

Omdat het lichaam gedeeltelijk elektrisch werkt, kunnen veel aandoeningen elektronisch worden behandeld. Dat is de gedachte achter de opkomende beweging van de ‘elektroceutica’, de elektronische tegenhanger van de farmaceutica. TU Delft-hoogleraar Wouter Serdijn vertelt over de ontwikkelingen en uitdagingen van het veld.

Farmaceutica is tot nu toe bijna het exclusieve domein geweest van de scheikunde, maar wellicht dat de elektronica de komende jaren net zo’n belangrijke rol gaat spelen. Het lichaam werkt immers gedeeltelijk elektrisch: denk aan de hersenen en het zenuwstelsel en het hart en andere spieren. Er zijn sterke aanwijzingen dat patiënten bij veel aandoeningen baat kunnen hebben bij een elektronische ingreep.

De aanpak wordt natuurlijk al toegepast. Cochleaire implantaten kunnen uitkomst bieden voor mensen met gehoorproblemen door direct signalen naar de gehoorzenuw te sturen. Hartritmestoornissen kunnen met een elektronische pacemaker worden gecorrigeerd. En bij Parkinson of chronische depressie kunnen elektrodes diep in het brein ontregelde elektrische activiteit aldaar tegengaan. Minister Schippers van Volksgezondheid heeft net aangekondigd om elektrostimulatie van het ruggenmerg bij chronische darmklachten te vergoeden.

Toch is dat in zekere zin nog pionierswerk. Volgende generaties van de aanpak kunnen de behandelingen waarschijnlijk nog aanzienlijk verbeteren. En niet alleen op neurologisch gebied; ook chronische aandoeningen zoals diabetes en astma zouden er baat bij kunnen hebben. Met als grote voordeel dat de behandeling, in tegenstelling tot bij medicijnen, kan worden toegespitst op het doelgebied, waardoor bijwerkingen mogelijk veel kleiner zijn.

Een duidelijk teken dat er iets te gebeuren staat, is dat de Britse farmareus GSK (Glaxosmithkline) eerder dit jaar de handen ineen heeft geslagen met Verily, zeg maar de medische tak van Google, om het nieuwe bedrijf Galvani Bioelectronics op te richten, dat exclusief onderzoek doet naar ‘elektroceutica’. Ze trekken samen 540 miljoen Britse pond uit voor het onderzoek de komende zeven jaar.

Een kolfje naar de hand van Wouter Serdijn, die de vakgroep Bio-elektronica aan de TU Delft leidt en zich de laatste jaren precies hierop profileert. ‘De term ‘elektroceutica’ bestond eigenlijk al langer, maar GSK is er een paar jaar geleden een betekenis aan gaan geven die exact de lading dekte van wat ik op dat moment deed. Dus toen ben ik daarmee verdergegaan.’

Niet dat hij medisch onderlegd is; zijn onderzoek richtte zich in eerste instantie op energiezuinige analoge ic’s en draadloze communicatie, pure elektrotechniek dus. De toepassingen ervan kwamen tijdens zijn carrière echter steeds meer te liggen bij implanteerbare devices, en dat effect heeft zichzelf versterkt: ‘Ik profileerde me altijd als low-power circuit-man, maar op een gegeven moment deed iedereen dat. Dus toen ging ik nadenken over wat mij nu onderscheidt van anderen, en dat waren de medische toepassingen, dus toen ben ik gaan spreken over biomedische elektronica. Op dat moment wisten de mensen uit de medische industrie me ineens te vinden. Heel gek, maar toen kwamen er ineens mensen die zeiden dat ze wat hebben aan ons onderzoek. Terwijl dat daarvoor ook zo zou zijn, maar dat werd nog niet gezien.’

De Bio-elektronica-groep komt nu regelmatig over de vloer bij academische ziekenhuizen – vooral die in Leiden en Rotterdam – maar ook bij de grote spelers op het gebied van implanteerbare devices. ‘We doen geen productontwikkeling voor hen, maar ze houden ons wel heel goed in de gaten als we weer een stap zetten in energiezuinig stimuleren en dergelijke. En dan willen ze ook wel van ons weten hoe het zit. Er zitten zeg maar stukjes Delft in patiëntenharten.’ Het mag dan ook geen verrassing heten dat Serdijn contacten heeft lopen bij GSK en al aan het kijken is of er gezamenlijke projecten mogelijk zijn met Galvani.

Dat laatste medische bolwerk

Spijt van die profilering heeft hij zeker niet; er blijken best raakvlakken te zijn tussen de elektronica en de biologie. ‘We geven hier al jaren het vak bioelectricity, dat gaat over de elektrische activiteit van cellen. Je kunt gewoon die interactie aangaan met neurostimulatoren en cochleaire implantaten en dergelijke. En voor een ingenieur is het eigenlijk prima te begrijpen wat er in de hersenen gebeurt – natuurlijk niet de psychologische processen maar wel de basale neurale processen. Het is ook fascinerend dat technologie kan inhaken op zeg maar dat laatste medische bolwerk, waar zo veel belangrijks van ons in zit maar waar we nog zo weinig van weten. Dat merk ik ook bij studenten.’

Juist het gebied van hersenstimulatie wordt echter nog weleens bestempeld als ‘middeleeuws’, een karakterisering die Serdijn onderschrijft: ‘Eigenlijk zijn het nog steeds een soort knipperlichten die in je hoofd gaan: ze geven met een strikte regelmaat een puls af. Maar je wilt daar slechts enkele cellen mee bereiken en die zijn heel erg klein, van een heel andere ordegrootte dan de afmetingen van de elektrodes. Als je dat misschien iets meer doseert, bijvoorbeeld door een burst te geven in plaats van een tonische puls, dan stimuleer je misschien net alleen de cellen die je wilt bereiken. Maar het is opvallend dat het bepalen van de juiste vorm van stimulatie vandaag de dag vooral gebaseerd is op trial-and-error.’

‘Het is ook wel grappig om te zien trouwens dat die neurostimulatoren momenteel al veel meer kunnen dan waarvoor ze zijn vrijgegeven. Fabrikanten brengen al ondergronds die geavanceerde stimulatiepatronen in, hoewel die nog niet gebruikt mogen worden omdat niet onomstotelijk is vastgesteld dat er geen ongewenste effecten optreden. Maar wanhopige patiënten willen best ver gaan als ze daarmee geholpen worden. Het is niet zo moeilijk om die functionaliteit in te bakken.’

Joh, ingenieur

Het minder goede nieuws voor Serdijns groep is dan ook dat er niet altijd evenveel technisch-wetenschappelijke eer te behalen valt aan de toepassingen. ‘Met de ‘vrijdagmiddagprojecten’ van ons kunnen we best al een grote impact hebben voor neurowetenschappers. We hebben bijvoorbeeld op een gegeven moment met een Beaglebone en eenvoudige analoge elektronica een systeem in elkaar gezet waarmee we closed-loop een muis vrij konden krijgen van epileptische aanvallen. Voor ons was dat gewoon een pcb’tje met een paar discrete componenten en een microcontroller; in feite stelde het niks voor. Maar het heeft wél een grote impact op het neurowetenschappelijke domein. En we hebben wel meer van dat soort dingen hier gehad.’

Het is dan ook niet altijd makkelijk om de juiste samenwerkingen op te zetten met de medici, merkt Serdijn. ‘Zwart-wit gezegd zijn er medisch wetenschappers of artsen die herkennen dat jij ook een specialisme vertegenwoordigt, en anderen die dat niet doen, die zeggen van: joh ingenieur, trek even die oplossing van de plank die ik nodig heb. Dan loopt de samenwerking heel snel dood. Maar als het wel lukt om van elkaar te begrijpen wat nou echt de uitdaging is en elkaars taal te spreken, dan heb je een dijk van een samenwerking. Dat is echt heel erg leuk.’

‘Je ziet nu ook wel dat er een behoefte aan het ontstaan is om die kloof tussen de medische en technische wereld te dichten. Ook vanuit de medische hoek. Dat heeft ook met het financieringsklimaat te maken. Ik heb het eerlijk gezegd weleens geprobeerd hoor, een project voor neurostimulatoren bij STW inzenden zonder daar een arts bij te betrekken. Maar ook al haal ik de relevante specificaties uit de literatuur, dan nog krijg ik de vraag of de arts het ermee eens is dat dit ook een verbetering is.’

En eerlijk is eerlijk, daarmee hebben ze wel een punt, moet Serdijn toegeven. ‘Bij die muis bijvoorbeeld hebben we gestimuleerd in de kleine hersenen, maar de meting was op de cortex, een andere plek. Zou ik niet hebben bedacht, want dat is niet mijn vakgebied. De elektronische oplossing is er nauwelijks door veranderd, maar er was dus nog wel een extra stap te maken. En soms zijn er andere dingen belangrijker dan alleen maar de technologische innovatie. Uiteindelijk moet het zijn weg vinden naar een kliniek en dan kunnen dat soort aspecten een rol spelen.’

Poor man’s silicon

Voor het elektroceutica-concept is er voor elektronici gelukkig nog meer dan genoeg te doen. Een van de belangrijke thema’s is terugkoppeling, zodat de neurostimulator zich kan aanpassen aan de reactie van het lichaam op de pulsen. Maar dit is nog problematisch, want hoe meet je de minuscule respons van een zenuwcel tegen de achtergrond van de veel grotere stimulatiepuls? ‘Die elektronica hebben we dus nog niet, maar er zijn verschillende manieren om dat aan te pakken’, vertelt Serdijn. ‘Je kunt het in het spatiële domein oplossen, dus gewoon verderop aan de zenuwbaan meten wat het effect is. Dat wordt bijvoorbeeld toegepast voor ruggenmergstimulatie. Je kunt het ook in het tijddomein proberen op te lossen. Je meet dan eerst het signaal na stimulatie en vlak daarna doe je dat nog een keer als die zenuw eigenlijk nog een beetje doof is, dus dan krijg je alles behalve de neurale respons. Wij proberen het te doen met een ad-omzetter die zich snel aanpast, die dus heel snel die stimulus volgt en daarbovenop dus die fijne resolutie probeert te pakken.’

Daarnaast richten de methodes zich nu nog vooral op het centrale zenuwstelsel, dat wil zeggen: de hersenen en het ruggenmerg. Maar voor veel van de nieuwe toepassingen, zoals die van Galvani, wordt het perifere zenuwstelsel beoogd, ofwel de vertakkende zenuwbundels die door het lichaam lopen. Daarmee moet het mogelijk zijn om de signalen naar specifieke organen te adresseren. Bovendien maken deze zenuwbundels – waarschijnlijk – allerlei onvoorziene interacties mogelijk. ‘Het AMC in Amsterdam heeft bijvoorbeeld aangetoond dat je door stimulatie van zo’n zenuwbundel reumatische artritis, die ontstekingsreacties die zich in de gewrichten voordoen, kunt onderdrukken. Dus door elektrische stimulatie kun je iets chemisch teweegbrengen verder op die zenuwbaan.’

De aanpak vraagt wel om geheel andere vormfactoren. ‘Tot nu toe zijn stimulatoren altijd gewoon blikjes, en die zijn stijf en groot en vooral gevuld met batterij. Dat moet dus anders, want je kunt ze niet eventjes rondom een zenuw aanbrengen die naar de maag toe loopt of zo. Elektronisch gezien is het exact dezelfde uitdaging, maar je moet elektronica maken die meebeweegt, want bijvoorbeeld zo’n maag staat te kneden en gaat op en neer.’

‘Wat momenteel best veel in de aandacht staat en waar wij ook mee werken, is PDMS, siliconenrubber. Ik verwacht dat je op den duur een soort hybride oplossing krijgt met flexibele actieve elektrodes in een soort poor man’s silicon die zich over grotere afstand kunnen verdelen en wat preprocessing doen. En je hebt natuurlijk een flexibele antenne voor energieoverdracht en de communicatie. Maar het hart van het implantaat zal gewoon een braaf high-performance cmos-ic zijn.’

Een andere stap is het inbouwen van leds in de neurostimulatoren. Dit heeft te maken met een techniek die de laatste jaren sterk in opkomst is: optogenetica, een techniek waarbij zenuwcellen via genetische modificatie lichtgevoelig worden gemaakt, zodat ze onder invloed van licht een puls vuren of juist onderdrukken. ‘Het grote voordeel is dat je die injectie heel lokaal kunt doen en dus alleen die cellen lichtgevoelig maakt die je wilt stimuleren. Dus het kan spatieel nog veel selectiever zijn dan elektrische stimulatie.’

‘Maar goed, het is dus wel genetische modificatie en dat is niet geaccepteerd om bij mensen te doen. Maar op het moment dat het een veel betere behandelingsoptie wordt, zou dat wel eens kunnen veranderen. De langetermijneffecten zijn nog niet bekend, maar ik denk dat mensen die nu al ondraaglijke pijn lijden niet lang hoeven na te denken of ze dat zouden willen.’

Upgraden van het menselijk lichaam

Copyright 2018 HDC Media B.V. / Leidsch Dagblad
All Rights Reserved

Leidsch Dagblad

9 februari 2018 vrijdag

Leiden en regio

BIBU; Blz. 004
1142 woorden

Upgraden van het menselijk lichaam

Geïmplanteerde chips zouden intelligentie, geheugen en zintuigen kunnen upgraden of eigenschappen toevoegen waarvan de mens nu alleen nog kan dromen. Zodra de volledige inhoud van het brein is om te zetten in programmacode en op andere hardware kan worden overgezet, is er ook geen reden meer waarom die geest niet kan worden gekopieerd of eeuwig kan blijven leven.

„Het uitgangspunt van transhumanisten kan ik zeker begrijpen”, zegt O’Connell. „Overlijden is iets afschuwelijks en ergens is het vreemd dat we accepteren dat we ons hele bestaan in de schaduw van ziekte en dood leven. Dan vind ik het fascinerend dat er mensen zijn die de mouwen opstropen en besluiten er iets aan te doen.” Maar dat levert ook vragen over het leven zelf op. „Ik denk dat het heel natuurlijk is om niet dood te willen en als je mij op mijn tachtigste vraagt of ik er nog vijf jaar bij wil, dan zeg ik waarschijnlijk ook nog ’ja’. Maar dat betekent niet dat ik voor altijd wil blijven leven.” Onwaarschijnlijk en ingrijpend als ze lijken, worden de ideeën wel degelijk serieus genomen door invloedrijke figuren in Silicon Valley, vertelt O’Connell. De bekende uitvinder en futurist Ray Kurzweil, director of engineering bij Google – naar verluidt Alcor-lid -, stelt in zijn boek ’Singularity is near’ dat het ’zeer waarschijnlijk is dat onsterfelijkheid in essentie mogelijk zal zijn’, terwijl PayPal-oprichter Peter Thiel een bekend financier is van diverse techbedrijfjes die ernaar streven het lichaam technologisch te verbeteren of onsterfelijkheid te bereiken.

Musks toverhoed

Tesla-oprichter Elon Musk heeft met Neuralink zelfs een apart bedrijf opgericht voor de ontwikkeling van brein-naar-machine-technologie. Neuralink werkt aan chips die in het brein bepaalde hersenaandoeningen moeten verhelpen, maar knutselt ook aan iets dat wordt omschreven als een ’toverhoed’. Dat apparaat moet uiteindelijk informatie uit de hersenen direct ’telepathisch’ doorgeven aan andere dragers van zo’n hoed, computers of het internet. Met zo’n verbinding zouden gedachten veel sneller kunnen worden doorgegeven dan via het moeizame en langzame proces van taal en stemgeluid, is Musks gedachte. ’Upgraden’ van het lichaam door technologie te implanteren is ook de gedachte waar de ’biohacking’-subcultuur om draait. Het wereldje wordt gevormd door individuen die op doe-het-zelfachtige wijze hun lichaam willen verbeteren door er chips of andere hardware aan toe te voegen, beschrijft O’Connell via ontmoetingen met hobbyisten. Sommigen plaatsen kleine chips onder de huid in hun hand van hetzelfde soort als waarmee de ov-chipkaart is uitgerust en gebruiken die als sleutel om het elektronische slot van hun huis of kamer mee te openen. Het menselijk lichaam kan beter, vindt ook Liviu Babitz, oprichter van de Britse start-up Cyborgnest. „We creëren nieuwe zintuigen voor mensen”, omschrijft hij de missie van Cyborgnest. Volgens de Delftse hoogleraar bio-elektronica Wouter Serdijn moet er echter nog veel gebeuren voordat mensen daadwerkelijk kunnen genieten van dergelijke ’verbeteringen’. „Het is technisch al mogelijk om implantaten direct op oor- en oogzenuwen aan te sluiten waarmee je ultrasoon geluid zou kunnen horen of waarmee je kleuren buiten het normale spectrum registreert.” De kwaliteit van het geluid haalt het volgens Serdijn echter lang niet bij die van het menselijk oor. „Subtiel verschil in toonhoogte komt niet door. De hersenen van kleine kinderen kunnen zich dermate ontwikkelen dat ze normaal kunnen spreken en luisteren met zo’n implantaat, maar als ik nu doof word en er eentje krijg, blijf ik ernstig gehandicapt.” Voor implantaten die rechtstreeks op de oogzenuw zijn aangesloten, geldt min of meer hetzelfde. „De resolutie is zo laag dat ze vooral contouren en kleurvlakken waarnemen. Je kunt die implantaten wel aanpassen zodat ze onzichtbare kleuren als infrarood en ultraviolet zichtbaar maken, maar een verbetering van je zicht is het zeker niet.”

Hersenen uitlezen

Onderzoekers die bezig zijn met uploaden van het brein gaan volgens Serdijn voorbij aan wat er mogelijk is. „De werking van de hersenen kun je nabootsen in een machine. Dat wil niet zeggen dat je de informatie die in de levende hersenen is opgeslagen, kunt uitlezen. Die ligt in de toestand van de (ongeveer honderd miljard, red.) neuronen in ons brein en de verbindingen die ze met elkaar zijn aangegaan. We kunnen goed waarnemen dat binnen een groep van honderden neuronen geroezemoes is. Maar uitlezen wat die neuronen allemaal individueel zeggen en tegen wie, is een heel ander verhaal. Het is de vraag of dat kan zonder het brein te beschadigen.” Dat het uiteindelijk toch gaat lukken, is de overtuiging van de in Silicon Valley werkzame Nederlandse wetenschapper Randal Koene. Hij werkt bij Kernel, een start-up in Los Angeles die zich bezighoudt met de ontwikkeling van breinimplantaten die mensen met geheugenproblemen moeten helpen. Koene is sinds zijn jeugd geïnteresseerd in het uploaden van de inhoud van het brein. Hij is de drijvende kracht achter de non-profitorganisatie carboncopies.org, een platform voor kennisuitwisseling over brein-uploading. De duur van een gemiddeld mensenleven is naar de smaak van Koene te kort. „Ik weet niet of eeuwig leven nu iets voor mij is, maar ik zou graag langer bestaan dan het typische mensenleven. Er zijn zoveel geweldige dingen te doen.” Het uploaden van het brein naar computers is voor hem nauw verbonden aan andere manieren waarop het lichaam met technologie valt te verbeteren. „Zo kun je nieuwe zintuigen of capaciteiten toevoegen. En als het lukt het brein over te zetten naar een machine, dan kun je ook heel veel verschillende lichamen uitproberen.” De gevolgen van een wereld waarin mensen hun hersenen upgraden of overzetten in een computer zijn niet te overzien, erkent hij. „Net als aan het begin van het internet. Toen was ook op geen enkele wijze te voorspellen waarvoor we het nu gebruiken.” Het zal uitdagingen opleveren en nieuwe kansen, maar welke dat zijn valt echt niet te voorspellen. Het is misschien ook nodig om mee te kunnen als kunstmatige intelligentie ons overvleugelt en de mens een soort huisdier van dat soort systemen wordt.”

Nieuw tijdperk

Koene denkt dat het nog vijf tot zeven jaar duurt voordat we de hersenen kunnen verbeteren door er chips in te implanteren. „Er komen opmerkelijke dingen aan, onder meer van het bedrijf waar ik werk. Nee, ik kan niet zeggen wat die zijn, dat is geheim.” Schrijver O’Connell denkt zelf niet dat het ooit gaat lukken de inhoud van het brein in een computer te proppen. „Ik ben echter geen wetenschapper. Mijn mening is dus tweedehands. Misschien maken we nu het begin van een heel nieuw tijdperk mee.”

Wouter van Bergen

Slimme contactlenzen en andere medische gadgets in je lijf

Een ‘slimme’ contactlens kan het leven van een diabetespatiënt een stuk eenvoudiger maken.

Veel mensen met diabetes moeten meerdere malen per dag hun bloedsuiker meten. Dat moet nu nog met een pijnlijke vingerprik. Vervelend en vaak onnodig, daarom wordt hard gewerkt aan alternatieve methoden.

Onderzoekers van de technische universiteit van Ulsan in Zuid-Korea zeggen nu een lens te hebben ontwikkeld die bloedsuikerwaarden uitmeet. Over deze lens en andere bio-elektronische medicijnen praten we met Wouter Serdijn. Hij is hoogleraar bio-elektronica aan de TU Delft.

Podcast op NPO1, Nieuwsweekend, uitgezonden zaterdag 27 januari 2018.

TU Delft en Inholland ontwikkelen chip voor beter gehoor

13 juli 2017

http://nieuws.inholland.nl/tu-delft-en-inholland-ontwikkelen-chip-voor-beter-gehoor/

Een chip die ervoor zorgt dat doven en slechthorenden beter horen met hun gehoorimplantaat, waardoor hun kwaliteit van leven toeneemt. Dat is het ambitieuze streven van project ReaSONS II Demo van de TU Delft en Inholland. Onlangs kreeg het project subsidie van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). Docent-onderzoekers en studenten van verschillende onderwijsdomeinen zullen gezamenlijk aan dit project werken.

Onderzoekers van de TU Delft ontwikkelden een chip die de zenuwactiviteit in het oor nauwkeurig kan meten. In combinatie met een cochleair implantaat kan hij slechthorende en dove mensen veel beter laten horen. De chip is echter nog incompleet. Daarom heeft de TU Delft in samenwerking met Inholland financiering aangevraagd om de ontwikkeling ervan voort te zetten onder de naam ReaSONS II Demo. Het uiteindelijke doel is om bedrijven een prototype aan te bieden dat ze kunnen toepassen in hoorproducten. De NWO kende de Demonstrator-subsidie vorige maand toe.

De ReaSONS chip

Dit project heeft impact op de kwaliteit van leven van mensen die een gehoorimplantaat gebruiken. We werken op het snijvlak van techniek en gezondheidszorg.

Cees Jeroen Bes, onderzoeker bij de TU Delft, ontwikkelaar van de ReaSONS-chip

Samenwerking tussen domeinen
Inholland voert dit project uit met behulp van docent-onderzoekers en studenten van de onderwijsdomeinen Techniek, Ontwerpen en Informatica (TOI) en Gezondheid, Sport en Welzijn (GSW). Het onderzoek wordt uitgevoerd door het kernteam Biomedical van het Domein TOI in samenwerking met het Inholland Health and Technology Centre (IHTC). De opgedane kennis wordt ingezet binnen de curricula van de betrokken opleidingen als voorbeelden tijdens de instructiecolleges, als projectopdracht en afstudeeropdracht. Met dit project denkt Inholland op wereldniveau mee over innovatieve oplossingen op het gebied van gezondheid.

Technisch hoogstandje
Cees Jeroen Bes, docent-onderzoeker en projectleider van het kernteam Biomedical, kent als geen ander de gebruikte technologie. Hij bedacht en implementeerde het concept achter de chip en promoveert er binnenkort op aan de TU Delft. “Nu is het tijd om de chip door te ontwikkelen van een proof-of-concept naar prototype en er een showcase van te maken”, zegt Bes. “Het project is niet alleen een technisch hoogstandje, het heeft ook nog eens impact op de kwaliteit van leven van mensen die een gehoorimplantaat gebruiken. We werken daarbij op het snijvlak van techniek en gezondheidszorg.”

Het project ReaSONS II Demo kent een gebruikerscommissie waarin de bedrijven Healthtech, Advanced Bionics, Twente Medical Systems, Applied Biomedical Systems en mede-patenthouder Leids Universitair Medisch Centrum plaatsnemen. Demonstrator is een financieringsinstrument van het NWO-domein Toegepaste en Technisch Wetenschappen dat daarmee kansrijk technisch onderzoek stimuleert en faciliteert om tot een zogeheten minimaal werkbaar product te komen.

Neem bij vragen over de ReaSONS II Demo contact op met onderzoeker Cees Jeroen Bes via ceesjeroen.bes@inholland.nl.

De Gezonde Samenleving

Met dit project dragen docent-onderzoekers en studenten bij aan De Gezonde Samenleving, een profilerend thema van Hogeschool Inholland. Dit is een samenleving waarin burgers, bij fysieke, psychische en sociale problemen, een zo gezond en sociaal mogelijk leven leiden en kunnen participeren. Een samenleving waarin mensen in hun sociale omgeving centraal staan. Waarin professionals mensen – preventief en bij problemen – activeren en ondersteunen bij het ontwikkelen van zelfmanagement en empowerment. Deze professionals werken interprofessioneel en maken gebruik van de laatste (technologische) innovaties.

Bio-elektronica: de medicijnen van de toekomst

New Book: Analog IC Design Techniques for Nanopower Biomedical Signal Processing

41LufUQMnzLChutham Sawigun (Mahanakorn University of Technology, Thailand) and Wouter Serdijn (Delft University of Technology) published a new textbook on Analog IC Design Techniques for Nanopower Biomedical Signal Processing with River Publishers.

  • The River Publishers Series in Biomedical Engineering 
  • ISBN: 9788793379299
  • eBook ISBN: 9788793379282
  • Price : € 80.00
  • Available:  May 2016
Description:

As the requirements for low power consumption and very small physical dimensions in portable, wearable and implantable medical devices are calling for integrated circuit design techniques using MOSFETs operating in the subthreshold regime, this book first revisits some well-known circuit techniques that use CMOS devices biased in subthreshold in order to establish nanopower integrated circuit designs.

Based on the these findings, this book shows the development of a class-AB current-mode sample-and-hold circuit with an order of magnitude improvement in its figure of merit compared to other state-of-the-art designs. Also, the concepts and design procedures of 1) single-branch filters 2) follower-integrator-based lowpass filters and 3) modular transconductance reduction techniques for very low frequency filters are presented. Finally, to serve the requirement of a very large signal swing in an energy-based action potential detector, a nanopower class-AB current-mode analog multiplier is designed to handle input current amplitudes of more than 10 times the bias current of the multiplier circuit. The invented filter circuits have been fabricated in a standard 0.18 µ CMOS process in order to verify our circuit concepts and design procedures. Their experimental results are reported.

 

Keywords:

Analog integrated circuit, Biomedical electronics, Bionic ear, Bio-potential, CMOS, Current-mode, Cochlear implant, ECG, Filter, Gm-C, Multiplier, Neural recording, Sample-and-hold, Signal processing, Subthreshold, Switched-current, Transconductance reduction, Transconductor, Weak inversion

Living better with electroceuticals

Beter worden met ‘electroceutica’by Harry Baggen, in Elektor Magazine, 30 maart 2016, 15:03

Electroceuticals can help combat a wide variety of medical conditions, such as tinnitus (ringing ears) and epilepsy. Electroceuticals comprise the smart, localized and targeted application of therapeutic electrical stimuli to the body. The technological challenge is to make electroceutical devices smarter and smaller.

According to Wouter Serdijn, Professor of Bio-Electronics at TU Delft in the Netherlands, electroceuticals could develop into a new and significant form of medicine, complementing existing pharmaceuticals. The targeted application of electrical stimuli can alleviate many medical conditions and is not limited to brain therapy. The main advantage of electroceuticals over pharmaceuticals is that the effect is localized. Drug act on the entire body, which can easily lead to adverse effects.

Existing electroceutical devices are still fairly bulky, with relatively large batteries and wires. There is also a high degree of trial and error in treatment methods. The aim is to develop a flexible brain implant on a polymer substrate that can serve as a general platform for various electroceutical devices.

Besser heilen mit „Electroceutica“

Electroceutica können helfen, verschiedene Erkrankungen wie Tinitus (Ohrpfeifen) oder Epilepsie zu lindern. Electroceutica bedeuten die intelligente, lokale und gezielte Verabreichung heilender elektrischer Impulse in den Körper. Die technische Herausforderung ist, die dafür erforderlichen Geräte kleiner und intelligenter zu machen.

Nach Wouter Serdijn, Professor für Bio-Elektronik an der niederländischen Technischen Universität Delft, können Electroceutica zu einem neuen bedeutenden medizinischen Mittel statt oder als Zusatz zur bestehenden Pharmazeutik werden. Die gezielte Anwendung elektrischer Impulse kann bei vielen Erkrankungen helfen, nicht nur bei solchen des Gehirns. Der große Vorteil der elektrischen Methode gegenüber der pharmazeutischen ist, dass sie lokal begrenzt sind: Pillen wirken auf den ganzen Körper ein und haben deswegen oft gravierende Nebenwirkungen.

Zurzeit ist die Verabreichung elektrischer Impulse an den Körper noch recht grobschlächtig mit relativ großen Batterien und Kabeln. Zudem funktioniert diese Methode noch in einem hohen Maß nach dem „Trial-and-error“-Prinzip. Das Ziel ist es, ein flexibles Hirnimplantat auf einem Polymersubstrat zu entwickeln, das zur allgemeinen Grundlage diverser Implantattypen werden kann.

Beter worden met ‘electroceutica’

Electroceutica kunnen helpen om allerlei aandoeningen zoals tinnitus (oorsuizen) en epilepsie te bestrijden. Electroceutica betreft het slim, lokaal en gericht toedienen van helende elektrische pulsen aan het lichaam. De technische uitdaging is het slimmer en kleiner maken van de benodigde apparatuur.

Volgens prof. Wouter Serdijn, hoogleraar bio-elektronica aan de TU Delft, kunnen ‘electroceutica’ uitgroeien tot een nieuw en belangrijk type medicijn, naast en als aanvulling op de al bestaande farmaceutica. Het gericht geven van elektrische pulsen kan bij veel aandoeningen helpen, en is niet alleen toepasbaar in de hersenen. Het grote voordeel van de elektrische methode boven farmaceutica is dat het effect lokaal is. Pillen werken in op het hele lichaam en veroorzaken derhalve snel bijwerkingen.

Op dit moment is het toedienen van elektrische pulsen aan het lichaam nog vrij grofstoffelijk, met bijvoorbeeld relatief grote batterijen en draden. Ook heeft de methode nog een vrij hoge graad van trial and error. Het streven is om een flexibel hersenimplantaat te ontwikkelen op een polymeer-substraat dat dan kan dienen als algemeen platform voor diverse typen implantaten.

Elektroceutica: elektronische medicijnimplantaten voor in je hoofd

Epilepsie, tinnitus en alcoholverslaving zijn misschien verschillend, de behandeling kan erg op elkaar lijken. En wel met elektrische medicijnen die je in je hoofd geïmplanteerd krijgt.

Hoogleraar bio-elektronica Wouter Serdijn houdt morgen zijn intree-rede over electroceutica aan de TU Delft. Het woord stamt af van het Engelse ‘electroceuticals’, de elektronische tegenhanger van de ‘pharmaceuticals’, medicijnen dus. Maar dan met een batterijtje erin die de patiënt als implantaat krijgt, meestal in de hersenen.

“Een bekende ziekte is Parkinson. Dan ontstaan tremoren. Die kun je onderdrukken met kleine, elektrische pulsjes. In de arm kun je het ook behandelen, maar dan behandel je de oorzaak niet, zegt Serdijn. “Vaak gaan tremoren gepaard met de aansturing van heel veel verschillende spieren. Dan zou je iemand moeten behangen met elektronica om de plaats waarop het zich openbaart de symptomen te onderdrukken.”

In de toekomst hoopt Serdijn de implantaten kleiner, draadloos en slimmer te maken: “Dat ze echt luisteren naar wat de patiënt nodig heeft”, legt Serdijn uit.

Klik hier voor de link naar het item op BNR Nieuwsradio: http://www.bnr.nl/?service=player&type=archief&fragment=20160330065325240

Slimme stroomstootjes als medicijn

Kleine, draadloze en intelligente implantaten die werken als elektronisch medicijn, dat is de droom van Wouter Serdijn. Serdijn hield deze week aan de TU Delft zijn intreerede als hoogleraar bio-electronica. Hij noemt zulke implantaten ‘electroceuticals’, als tegenhanger van de ‘farmaceuticals’, ofwel pilletjes. Het idee is eenvoudig: waar pilletjes de biochemische activiteit van lichaamscellen veranderen, veranderen electroceuticals de elektrische activiteit.

De moleculen uit een pilletje komen via de bloedbaan in het hele lichaam terecht. De effecten treden niet direct op, zijn niet lokaal en ook niet meteen omkeerbaar. Bovendien hebben pilletjes vaak ongewenste bijeffecten. Maar eeuwenlang was er geen andere mogelijkheid.

Micro-electronica heeft hier verandering in gebracht. Zo kunnen sinds een jaar of tien patiënten met ernstige Parkinson of depressie behandeld worden met een hersenimplantaat dat lokaal in de hersenen elektrische pulsjes genereert. ‘Deze implantaten hebben echter flink wat nadelen’, vertelt Serdijn een dag voor zijn oratie. ‘Ze zijn groot en hebben ook nog eens een grote batterij nodig, typisch iets van zes bij vier bij één centimeter. De batterij wordt nu nog in de borstkas aangebracht. Via draadjes loopt de stroom naar het implantaat in de hersenen. Die draadjes zitten eigenlijk in de weg. Een ander nadeel is dat het implantaat zelf dom is. Arts en de patiënt moeten samen de beste instelling zien te ontdekken. Maar dat is vaak moeilijk en subjectief.’

Chips met een luisterend oor

Serdijn ontwikkelt microchips voor implantaten die niet alleen klein en draadloos zijn, maar ook intelligent: ‘Onze chips zijn slechts twee bij twee millimeter groot, vooral doordat we de pulsgenerator veel kleiner hebben kunnen maken. Ze verbruiken veel minder stroom en daardoor volstaat een kleinere batterij. Bovendien is de batterij oplaadbaar. Ik stel me voor dat deze in de toekomst draadloos wordt opgeladen door een spoel in een intelligent kussen, terwijl de patiënt ligt te slapen.’

Nieuw is dat de chip lokaal luistert naar de therapeutische behoefte en daarop zijn gegenereerde pulsen afstemt. Serdijn geeft het voorbeeld van de behandeling van oorsuizen: ‘Bij sommige patiënten onderdrukken elektrische pulsen de klachten. Nu gebeurt die behandeling nog subjectief. De patiënt moet zelf aangeven wat hij hoort en of er verlichting is opgetreden. Een slim implantaat meet het signaal op de gehoorschors, genereert elektrische pulsjes en meet tegelijkertijd hoe goed het effect is. Idealiter werkt het implantaat alleen op de momenten dat het nodig is en in de hoeveelheid die nodig is. Het implantaat denkt als het ware mee. Electroceuticals houden automatisch rekening met het feit dat ieder mens anders is en dat de toestand van een persoon in de tijd verandert.’

Fijnregelen met schokjes

Behandeling met slimme stroomstootjes hebben de eerste positieve resultaten opgeleverd in de behandeling van epilepsie bij muizen. Serdijn werkt ook samen met de Belgische hoogleraar neurowetenschappen Dirk de Ridder in de behandeling van alcoholverslaving. De implantaten hoeven ook niet beperkt te blijven tot de hersenen, zegt Serdijn. ‘Elk weefsel dat gevoelig is voor elektriciteit, dus ook spieren en organen, kun je met electroceuticals beïnvloeden. Een paar jaar geleden is bijvoorbeeld aangetoond dat elektrische stimulatie ook een aandoening als reuma kan onderdrukken.’

Serdijn ziet electroceutica niet als vervangers van de klassieke farmaceutica, maar als aanvulling. ‘Electroceutica zijn vooral geschikt voor aandoeningen die hun oorsprong op een specifieke plek vinden. Met farmaceutica kun je als het ware de biochemische basiswaarde van het lichaam veranderen en daarna kun je heel lokaal met electroceutica de boel fijnregelen.’

Op dit moment zit het onderzoek naar electroceutica nog in de fase van dierproeven. ‘Voordat hier goedgekeurde behandelingen voor mensen uit komen, zijn we jaren verder’, besluit Serdijn.

Bennie Mols vertelde ook over dit onderwerp in het radioprogramma De Ochtend: Stroomstootjes in plaats van pillen

Beter worden met ‘electroceutica’

Electroceutica kunnen helpen om allerlei aandoeningen, zoals tinnitus (oorsuizen) en epilepsie, te bestrijden. Dat zegt prof. Wouter Serdijn in zijn intreerede als hoogleraar bio-elektronica aan de TU Delft op woensdag 30 maart. Electroceutica betreft het slim, lokaal en gericht toedienen van helende elektrische pulsen aan het lichaam. De technische uitdaging is het slimmer en kleiner maken van de apparatuur.

Minder bijwerkingen

Volgens prof. Wouter Serdijn kunnen ‘electroceutica’ uitgroeien tot een nieuw en belangrijk type medicijn, naast en als aanvulling op de al bestaande farmaceutica. Werken farmaceutica op een chemische wijze in op het lichaam, electroceutica doen dit op een elektrische manier.
Electroceutica dienen helende elektrische pulsen aan het lichaam toe op een slimme en gerichte wijze, vooral voor aandoeningen die hun oorsprong vinden op specifieke plaatsen, in bijvoorbeeld de hersenen.Het gericht geven van elektrische pulsen kan bij veel aandoeningen helpen, en is zeker niet alleen toepasbaar in de hersenen. Het grote voordeel van de elektrische methode boven farmaceutica is dat het effect lokaal is. Pillen werken immers in op het hele lichaam en veroorzaken derhalve snel bijwerkingen.

Slimmer en kleiner

Serdijn ziet electroceutica nadrukkelijk als aanvulling op ‘gewone’ medicijnen. ‘Het gaat om het vinden van de perfecte combinatie  tussen electroceuticals en conventionele medicatie. Op dit moment is het toedienen van elektrische pulsen aan het lichaam nog vrij grofstoffelijk, met bijvoorbeeld relatief grote batterijen en draden. Ook heeft de methode nog een vrij hoge graad van trial and error.’

Een chip in zijn meet-behuizing voor het uitlezen van de neurale signalen tijdens en direct na het elektrisch stimuleren, door Cees-Jeroen Bes, in samenwerking met LUMC-KNO. Ondersteund door STW, TMSi, AB-Sys and HealthTech.

Er zijn daarom twee technische hoofddoelen, zegt Serdijn. ‘De uitdaging is het kleiner (dus ook makkelijker implanteerbaar) én slimmer maken van de apparatuur. Dat slimmere zit hem vooral in het meten van de toestand van en het aanpassen van de therapie aan een individuele patiënt. Dit patiënt-specifieke element is heel belangrijk. Want niet alleen is iedere patiënt anders, de toestand van iedere individuele patiënt varieert ook nog eens in de tijd. Door dit te meten en terug te koppelen kunnen we veel gerichter de juiste therapie instellen.’

Concreet is het doel om een flexibel hersenimplantaat te ontwikkelen op een polymeer-substraat. Dat implantaat dient dan als algemeen platform voor diverse typen implantaten.

Tinnitus

Volgens Serdijn is het (potentiële) toepassingsgebied van electroceutica zeer breed. ‘Het kan bijvoorbeeld worden ingezet voor de behandeling van onder meer tinnitus (oorsuizen), epilepsie, het syndroom van Tourette en bepaalde verslavingen. Op deze gebieden worden nu ook al successen geboekt.’
‘Neem tinnitus als voorbeeld. Wereldwijd hebben meer dan 500 miljoen mensen hier last van. Sommige patiënten kunnen worden geholpen via elektrische pulsen. Nu gebeurt die behandeling nog subjectief’, zegt Serdijn. ‘De patiënt moet zelf aangeven wat hij hoort en of er enige verlichting als gevolg van de stimulatie is opgetreden. Intelligente electroceuticals kunnen de doelmatigheid van de toegepaste therapie continu monitoren en deze aanpassen aan de behoeften van de patiënt, zelfs wanneer deze alweer op de terugweg is van het ziekenhuis.’

Symposium

Uiteraard vinden de technische ontwikkelingen plaats in nauwe samenwerking met artsen. Dit komt ook tot uiting in het symposium dat op de dag van de intreerede van Serdijn wordt gehouden. Medical Delta partners ErasmusMC en LUMC zijn goed vertegenwoordigd in het programma. Tijdens het symposium wordt bio-elektronica besproken vanuit een technologisch, een medisch, een klinisch, een industrieel en een maatschappelijk perspectief. Vijf vooraanstaande sprekers van het ErasmusMC, het LUMC, de Dunedin School of Medicine en een biomedisch bedrijf behandelen deze thema’s.
Meer informatie
Het symposium en de intreerede van prof. Serdijn.
Contact
Wouter Serdijn, prof. bio-elektronica TU Delft, W.A.Serdijn@tudelft.nl, +31 (0)15 278 1715.
Claire Hallewas, persvoorlichter TU Delft, c.r.hallewas@tudelft.nl, +31 (0)6 4095 3085.