Category Archives: Education

Komt de Terminator tot leven?

De mens in 2050

Elon Musk lanceerde onlangs zijn bedrijf Neuralink. En wat Musk wil is een goede indicatie van de technologie van de toekomst. Hij wil direct contact maken met onze hersenen en daarmee mensen met elkaar verbinden. Informatie-uitwisseling zonder spraak of typen. Die technologie, waarbij elektronica in onze hersenen wordt geïmplementeerd, is nu in de maak. 

Is de mens een cyborg in, zeg, 2050? En is dat erg? Wouter Serdijn, Professor in Bio-Elektronica aan de TU Delft, vraagt het zich hardop af.

Wouter Serdijn

Wat er gaat gebeuren is eigenlijk evolutionair best logisch. Er gaat een verdere integratie van mens en technologie plaatsvinden. De mens is een grote elektrochemische machine. De langzame informatie-uitwisseling in ons lichaam vindt plaats door middel van hormonen; de snelle informatie-uitwisseling door middel van elektriciteit en neurotransmitters. Je kunt de interactie tussen die laatste twee beïnvloeden met elektronica.
Zo is het nu al standaard dat mensen die doof geboren worden een cochleair  implantaat krijgen. In 2050 krijgen mensen die blind zijn standaard een retinaal implantaat op hun netvlies. Dat zal er veel beter uit zien dan vandaag. Het is nu nog een soort van camera, je ziet duidelijk dat iemand gehandicapt is, maar tegen die tijd zit het volledig in de oogbol.
We zullen in 2050 nog beter begrijpen hoe onze hersenen werken. En daardoor dus beter de interactie aan kunnen gaan met onze hersenen om betere behandelingen te kunnen bieden. Eigenlijk worden medische defecten nu op een zeer brute manier onderdrukt. Ik hoop daarom op een volwaardiger alternatief voor chemische geneesmiddelen, die hebben echt een batterij aan bijwerkingen. We werken daarom bijvoorbeeld aan injecteerbare elektronische medicijnen. Die kant moet het opgaan.

Ik richt me vooral op het verbeteren van de kwaliteit van leven bij mensen die medisch wat minder fortuinlijk zijn. Het zal zeker ook aantrekkelijk worden om onszelf via technologie te verbeteren. Of vergroten. Ook wanneer er geen medische noodzaak voor is, zoals Elon Musk en anderen dat willen Waarschijnlijk worden we dan geïntegreerd met het Internet. Wat is dan nog de waarde van de individuele mens? Bestaat er dan nog privacy in het collectief? Dat moeten we goed in de gaten gaan houden.

We moeten waakzaam zijn voor filmscenario’s, maar vooral geen technofoben worden.  Ja, je kunt alle sensorische, motorische en empatische processen elektrisch beïnvloeden. Dat kan nu ook al, chemisch, en daar lijken mensen minder problemen mee te hebben. In de jaren 50 nog was men bang voor een televisie die kon terugkijken. Nu omarmen we onze interactieve tv. We gaan fast forward naar de toekomst. In 2050 hoop ik dat we allemaal op een veel prettigere manier leven en oud worden met geïntegreerde elektronica. Dan wil je echt niet meer terug naar 2017.

Tekst: Marieke Roggeveen
Foto: Marieke Roggeveen

Vacancy: Assistant/Associate Professor of Bioelectronics

Department/faculty: Electrical Engineering, Mathematics and Computer Science
Level: PhD degree
Working hours: 38 hours per week
Contract: Tenure track with possibilities for advancement
Salary: €3400 to €6299 per month gross

 

Electrical Engineering, Mathematics and Computer Science

The Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) is known worldwide for its high academic quality and the social relevance of its research programmes. The faculty’s excellent facilities accentuate its international position in teaching and research. Within this interdisciplinary and international setting the faculty employs more than 1100 employees, including about 400 graduate students and about 2100 students. Together they work on a broad range of technical innovations in the fields of sustainable energy, telecommunications, microelectronics, embedded systems, computer and software engineering, interactive multimedia and applied mathematics. EEMCS: Your Connection to the Future.

The Department of Microelectronics has a strong interdisciplinary research and education programme in the areas of 1. health and well-being 2. next generation wireless and sensing technology and 3. safety and security.
With 11 IEEE Fellows among the staff, an excellent microfabrication infrastructure, electrical and physical characterisation facilities, and a strong international academic and industrial network, the department provides high-level expertise in each of these areas throughout the entire system chain.

The Bioelectronics section is a relatively new section that has been created to address coherently the challenges we face in developing wearable, injectable and implantable medical devices. This group conducts research, education and valorisation in the fields of ultra low-power analog and mixed-signal circuits and systems for active wearable, implantable and injectable biomedical microsystems.

Job description

The Bioelectronics group is offering a tenure-track position at the Assistant or Associate Professor level in the field of biomedical circuits and systems. You will further develop existing research topics, such as analog and mixed-mode circuits and systems for wearable and implantable medical devices and create new topics, which may include electroceuticals. You will be involved in teaching at the BSc and MSc levels in the TU Delft’s Electrical Engineering and Biomedical Engineering programmes. Collaborative initiatives are strongly encouraged. You are expected to write research proposals for national and international funding organisations. This is a tenure-track position for a period of five years with the possibility of a permanent faculty position at the end of the contract, subject to mutual agreement.

A Tenure Track, a process leading up to a permanent appointment with the prospect of becoming an Associate or Full Professor, offers young, talented academics a clear and attractive career path. During the Tenure Track, you will have the opportunity to develop into an internationally acknowledged and recognised academic. We offer a structured career and personal development programme designed to offer individual academics as much support as possible. For more information about the Tenure Track and the personal development programme, please visit www.tudelft.nl/tenuretrack.

Requirements

You must have a PhD degree in the field of biomedical circuits and systems (BioCAS) and some years of experience as a post-doc or university professor. You have an excellent academic track record, reflected by peer-reviewed journal publications, conference contributions, and international research experience. An affinity for working on the interface with other disciplines (biomedical engineering, neuroscience, electrophysiology, etc.) and with clinicians and medical researchers is preferred. You should have a demonstrated ability to initiate and direct research projects and to obtain external funding. Experience in teaching and mentoring of students is required. A teaching qualification is recommended. Demonstrated ability in written and spoken English is required.

Conditions of employment

A tenure-track position is offered for six years. Based on performance indicators agreed upon at the start of the appointment, a decision will be made by the fifth year whether to offer you a permanent faculty position.
The TU Delft offers a customisable compensation package, a discount for health insurance and sport memberships, and a monthly work costs contribution. Flexible work schedules can be arranged. An International Children’s Centre offers childcare and an international primary school. Dual Career Services offers support to accompanying partners. Salary and benefits are in accordance with the Collective Labour Agreement for Dutch Universities.
The TU Delft sets specific standards for the English competency of the teaching staff. The TU Delft offers training to improve English competency.
Inspiring, excellent education is our central aim. If you have less than five years of experience and do not yet have your teaching certificate, we allow you up to three years to obtain this.

Information and application

For more information about this position, please contact Prof. Wouter Serdijn, e-mail: W.A.Serdijn@tudelft.nl. To apply, please provide a detailed CV, publication list, and a written statement on your research and teaching interests and vision along with a letter of application and the names and contact details of at least three references. Please e-mail your application by 1 December 2016 to L. M. Ophey, Hr-eemcs@tudelft.nl.
When applying for this position, please refer to vacancy number EWI2016-38.

Enquiries from agencies are not appreciated.

Vonken in de meterkast

De schokkende strijd tegen depressie, Parkinson en andere hersenziekten

VoorkantOns brein is een meterkast, een netwerk van kabels dat het lichaam van stroom voorziet. Soms ontstaat er kortsluiting – kabels slijten, stoppen slaan door – met hersenziekten als gevolg. Op dat moment kan elektriciteit uitkomst bieden. Depressie, Parkinson en chronische pijn; met een stroomstoot kunnen steeds meer mensen van hun klachten worden afgeholpen.

In Vonken in de meterkast laat Bart Lutters ons kennismaken met de fascinerende wereld van de neurostimulatie; van de allereerste vonk tot de nieuwste wetenschappelijke ontwikkelingen. Wie is er ooit op het idee gekomen om een patiënt onder stroom te zetten? Welke ziektes kunnen er met stroom behandeld worden? En wat doet zo’n stroomstoot eigenlijk met onze hersenen? Vonken in de meterkast gaat over elektrische vissen en op-afstand bestuurbare stieren, robotarmen en gereanimeerde ledematen, maar vooral over hoe stroom ons al duizenden jaren beter maakt.

bart_luttersBart Lutters is zijn artsenopleiding aan het afronden (Selective Utrecht Medical Master) en wordt gefascineerd door alles wat met de hersenen te maken heeft. Hij heeft diverse prijzen gewonnen voor zijn onderzoek naar epilepsie en schrijft regelmatig over de geschiedenis van de geneeskunde in onder andere Brain, het toonaangevende wetenschappelijke tijdschrift op het gebied van de neurowetenschappen.

Vonken in de meterkast is vanaf 14 oktober verkrijgbaar in de betere boekhandel, ook online te bestellen via Bol.com.

Wouter Serdijn (hoogleraar bioelektronica aan de TU Delft) heeft middels interviews aan de inhoud van dit boek bijgedragen.

Google wil nu ook data uit je lichaam

Google wil nu ook data uit je lichaam

Bio-elektronica Techbedrijven verzamelen met farmareuzen zeer gevoelige informatie over medische aandoeningen. Ligt die straks bij je baas of je verzekeraar?

MRI-scan van een jongen van 9. Aan het verzamelen en verwerken van medische data kleven privacyrisico’s. Foto ANP

Wouter van Noort, NRC Handelsblad, 7 augustus 2016

Gadgets die werken als medicijnen. Het is de toekomst als een groeiende groep farmacie- en technologiebedrijven zijn zin krijgt. Googles moederbedrijf Alphabet kondigde vorige week een samenwerking aan met farmareus GlaxoSmithKline (GSK) op het gebied van zogeheten bio-elektronica, minuscule implanteerbare apparaatjes die via elektrische signalen ziektes kunnen genezen en voorkomen. Ook Apple en Samsung werken al een tijdje aan bio-elektronica en biosensoren: meetapparaatjes voor lichamelijke functies die je zowel buiten als binnen in je lijf kunt dragen.

Apple en Samsung hebben, net als Google, bovendien steeds nauwere banden met de farmaceutische industrie. Googles zusterbedrijf Verily, dat zich helemaal richt op farmaceutische toepassingen, sloot op andere gebieden al eerder samenwerkingen met Johnson & Johnson en Novartis. Apple werkt ook samen met GSK, en Samsung investeert veel om zelf meer een farmaceutisch bedrijf te worden.

Dat juist bedrijven uit de consumententechnologie ineens zo geïnteresseerd zijn in de farmacie, en vooral in de bio-elektronica, roept interessante vragen op. Met name over privacy: behalve informatie óver mensen, kunnen technologiebedrijven dankzij bio-elektronica straks namelijk ook data verzamelen ín mensen.

„Ik ben er niet gerust op”, zegt Wouter Serdijn, hoogleraar bio-elektronica aan de TU Delft en London University College. „Een bedrijf als Google weet al heel veel van je, en juist als je gegevens uit bio-elektronica combineert met grote hoeveelheden andere data, ontstaan mogelijk interessante inzichten over de gezondheid van individuen.”

Die inzichten kunnen nuttig zijn voor de genezing van bepaalde aandoeningen, maar er zitten ook privacyrisico’s aan. Ook de Haagse technologiedenktank Rathenau Instituut spreekt al jaren zijn zorgen uit over privacygevolgen van geïmplanteerde elektronica.

Wat kunnen techbedrijven nou precies te weten komen ín een lichaam? „Het gaat met de huidige bio-elektronica vooral om de communicatie tussen cellen of bijvoorbeeld informatie over de zuurtegraad in je darmen”, zegt Serdijn. Volgens hem is de informatie die uit bio-elektronica en -sensoren komt op zichzelf commercieel nog niet direct heel bruikbaar. Maar gecombineerd met andere informatie, over bijvoorbeeld lichaamsbeweging, zijn daar mogelijk wel interessante patronen in te ontdekken. „Dan zou je er mogelijk zaken als epileptische aanvallen mee kunnen voorspellen, en misschien wel andere ernstige aandoeningen”, zegt Serdijn. En dat is informatie die je niet altijd wilt delen met je werkgever of verzekeraar.

GSK wil geen details geven over hoe het informatie uit bio-elektronica precies gaat delen met Googles zusterbedrijf Verily. Wel zegt woordvoerder Carien Mulder: „Wij staan honderd procent voor het waarborgen van vertrouwelijke patiënteninformatie, en dat is ook een prioriteit in de nieuwe samenwerking met Verily.” Ze geeft echter geen antwoord op wat er precies is afgesproken over de data die er worden verzameld in het lichaam.

Een woordvoerder van Alphabet kon niet op tijd reageren op vragen van NRC. Wel zei Brian Otis, de technologiedirecteur van Alphabet-dochter Verily, vorige week tegen het Amerikaanse Forbes Magazine dat het zijn bedrijf bij deze samenwerking vooral te doen is om de data. „De uitdaging met bio-elektronica zit ’m uiteindelijk in data. Het uitlezen en interpreteren van de signalen. Natuurlijk heeft Google expertise in het omgaan met grote hoeveelheden data, beslissingen nemen op basis van data en feedback geven aan de gebruiker.”

Google beschikt over enorm veel gegevens over menselijk gedrag. Via de Android-smartphones van het bedrijf verzamelt het ook veel informatie over bijvoorbeeld lichaamsbeweging. Het blijkt bij dit soort big data-toepassingen vaak erg lastig om verbanden tussen gegevens te ontdekken die ook echt bruikbaar zijn. Maar juist een bedrijf als Google is daar heel goed in.

Informatie uit bio-elektronica zou ook bepaald niet de eerste medische data zijn die Google de laatste tijd verzamelt. Via de zoekmachine ziet het bedrijf al jaren welke medische vragen bezoekers stellen. Via zusterbedrijf 23andMe, dat genetische tests ontwikkelt, heeft Google de laatste jaren daarnaast van vele duizenden mensen DNA-informatie verzameld. Onlangs sloot het een samenwerking met de Britse National Health Service voor het analyseren van grote hoeveelheden patiëntengegevens van Britse burgers.

Dat zijn zeer uiteenlopende projecten, met ook zeer uiteenlopende privacyvoorwaarden. Het is niet automatisch zo dat Google met die informatie allerlei gedetailleerde profielen opbouwt die het zomaar kan herleiden tot individuen. Laat staan dat het die zomaar kan doorverkopen, als het bedrijf dat al zou willen. Er gelden voor medische gegevens strengere privacywetten dan voor andere soorten informatie.

Maar de Amerikaanse technologiereus verdient wel veruit het meeste van zijn geld met op maat gemaakte advertenties. En als je advertenties op basis van je zoekgeschiedenis krijgt voorgeschoteld, waarom dan niet op basis van data uit een biosensor die uitwijst dat je binnenkort misschien behoefte krijgt aan een bepaald medicijn?

„Zover is het voorlopig waarschijnlijk nog niet,” zegt hoogleraar Serdijn. „Maar het is wel zaak om dit heel goed in de gaten te houden.”

HOE BIG PHARMA EN BIG TECH SAMENWERKEN

Apple sloot in juli een samenwerking met Glaxo Smith Kline (GSK) om behandelingen te ontwikkelen voor reuma. GSK gaat daarvoor Apples onderzoekssoftware ResearchKit gebruiken. Dat platform brengt allerlei gegevens samen die Apple over zijn gebruikers verzamelt, bijvoorbeeld over lichaamsbeweging. Die is te meten via de bewegingssensoren in iPhones. Dergelijke sensoren kunnen volgens de twee bedrijven ook worden gebruikt om nauwkeuriger in kaart te brengen hoe reuma het leven van patiënten beïnvloedt.

Googles zusterbedrijf Verily werkt samen met Novartis om een slimme contactlens te ontwikkelen die bloedsuiker meet in het oogvocht van diabetespatiënten. Zo’n lens zou in de plaats kunnen komen van andere manieren om bloedsuikers te meten, bijvoorbeeld van de bloedprikken die nu gebruikelijk zijn.

Telefoonmaker Samsung investeert ook fors in biotech en farmacie, onder meer via Samsung Bioepis en Samsung Biologics.

New Book: Analog IC Design Techniques for Nanopower Biomedical Signal Processing

41LufUQMnzLChutham Sawigun (Mahanakorn University of Technology, Thailand) and Wouter Serdijn (Delft University of Technology) published a new textbook on Analog IC Design Techniques for Nanopower Biomedical Signal Processing with River Publishers.

  • The River Publishers Series in Biomedical Engineering 
  • ISBN: 9788793379299
  • eBook ISBN: 9788793379282
  • Price : € 80.00
  • Available:  May 2016
Description:

As the requirements for low power consumption and very small physical dimensions in portable, wearable and implantable medical devices are calling for integrated circuit design techniques using MOSFETs operating in the subthreshold regime, this book first revisits some well-known circuit techniques that use CMOS devices biased in subthreshold in order to establish nanopower integrated circuit designs.

Based on the these findings, this book shows the development of a class-AB current-mode sample-and-hold circuit with an order of magnitude improvement in its figure of merit compared to other state-of-the-art designs. Also, the concepts and design procedures of 1) single-branch filters 2) follower-integrator-based lowpass filters and 3) modular transconductance reduction techniques for very low frequency filters are presented. Finally, to serve the requirement of a very large signal swing in an energy-based action potential detector, a nanopower class-AB current-mode analog multiplier is designed to handle input current amplitudes of more than 10 times the bias current of the multiplier circuit. The invented filter circuits have been fabricated in a standard 0.18 µ CMOS process in order to verify our circuit concepts and design procedures. Their experimental results are reported.

 

Keywords:

Analog integrated circuit, Biomedical electronics, Bionic ear, Bio-potential, CMOS, Current-mode, Cochlear implant, ECG, Filter, Gm-C, Multiplier, Neural recording, Sample-and-hold, Signal processing, Subthreshold, Switched-current, Transconductance reduction, Transconductor, Weak inversion

2016 IEEE Biomedical Circuits and Systems Conference (BioCAS 2016), Oct. 17-19 | Shanghai, China

IEEE BioCAS is a premier international forum for researchers and engineers to present their state-of-the-art multidisciplinary research and development activities at the frontiers of medicine, life sciences, and engineering. The conference will enable members of circuits and systems communities to broaden their knowledge in emerging areas of research at the interface of the life sciences and engineering.

BioCAS 2016 comprises invited talks on cutting-edge development, insightful tutorials in engineering and medicine, demonstrations, and technical sessions. The three-day program of BioCAS 2016 is multidisciplinary in topics including but not limited to:

  • Bio-inspired and Neuromorphic Circuits and Systems
  • Bio-medical Sensors and Interfacing Circuits
  • Biomedical Imaging Technologies & Image Processing
  • Electronics for Brain Science
  • Genomics and Systems Biology
  • Implantable and Wearable Devices and Systems
  • Internet of Things (IoT) for Healthcare
  • Innovative Circuits for Medical Applications
  • Lab-on-Chip/BioMEMS/Point-of care Devices
  • Medical Information Systems and Bioinformatics
  • Rehabilitation and Assistive Technologies
  • Signal Processing Systems for Bio-medical Applications
  • Therapeutic Devices and Closed-loop Systems
  • Wireless and Energy Harvesting/Scavenging Technology

Call for Papers

The complete 4-page paper (in standard IEEE double-column format), including the title, authors’ names, aliations and e-mail addresses, as well as a short abstract and an optional demonstration video link (3 minutes max) are requested during submission. Papers must be submitted electronically in PDF format through http://www.biocas2016.org.

Important dates:

  • Special Session Proposal Due: June 5, 2016
  • Paper Submission Due: June 15, 2016
  • Demonstration Proposal Due: July 31, 2016
  • Author Notication Date: August 31, 2016
  • Author Registration Date: September 15, 2016
  • Conference Dates: October 17-19, 2016
  • Post Conference Workshop Dates: October 20-21, 2016

Highlights:

Selected BioCAS2016 papers will be published in the IEEE Transactions on Biomedical Circuits and Systems Special Issue.

BrainCAS, a 2-day post conference workshop, will be held in Hangzhou (a beautiful city near Shanghai) from Oct. 20-21, 2016. More details of BrainCAS will be available in BioCAS2016 website soon.

Living better with electroceuticals

Beter worden met ‘electroceutica’by Harry Baggen, in Elektor Magazine, 30 maart 2016, 15:03

Electroceuticals can help combat a wide variety of medical conditions, such as tinnitus (ringing ears) and epilepsy. Electroceuticals comprise the smart, localized and targeted application of therapeutic electrical stimuli to the body. The technological challenge is to make electroceutical devices smarter and smaller.

According to Wouter Serdijn, Professor of Bio-Electronics at TU Delft in the Netherlands, electroceuticals could develop into a new and significant form of medicine, complementing existing pharmaceuticals. The targeted application of electrical stimuli can alleviate many medical conditions and is not limited to brain therapy. The main advantage of electroceuticals over pharmaceuticals is that the effect is localized. Drug act on the entire body, which can easily lead to adverse effects.

Existing electroceutical devices are still fairly bulky, with relatively large batteries and wires. There is also a high degree of trial and error in treatment methods. The aim is to develop a flexible brain implant on a polymer substrate that can serve as a general platform for various electroceutical devices.

Besser heilen mit „Electroceutica“

Electroceutica können helfen, verschiedene Erkrankungen wie Tinitus (Ohrpfeifen) oder Epilepsie zu lindern. Electroceutica bedeuten die intelligente, lokale und gezielte Verabreichung heilender elektrischer Impulse in den Körper. Die technische Herausforderung ist, die dafür erforderlichen Geräte kleiner und intelligenter zu machen.

Nach Wouter Serdijn, Professor für Bio-Elektronik an der niederländischen Technischen Universität Delft, können Electroceutica zu einem neuen bedeutenden medizinischen Mittel statt oder als Zusatz zur bestehenden Pharmazeutik werden. Die gezielte Anwendung elektrischer Impulse kann bei vielen Erkrankungen helfen, nicht nur bei solchen des Gehirns. Der große Vorteil der elektrischen Methode gegenüber der pharmazeutischen ist, dass sie lokal begrenzt sind: Pillen wirken auf den ganzen Körper ein und haben deswegen oft gravierende Nebenwirkungen.

Zurzeit ist die Verabreichung elektrischer Impulse an den Körper noch recht grobschlächtig mit relativ großen Batterien und Kabeln. Zudem funktioniert diese Methode noch in einem hohen Maß nach dem „Trial-and-error“-Prinzip. Das Ziel ist es, ein flexibles Hirnimplantat auf einem Polymersubstrat zu entwickeln, das zur allgemeinen Grundlage diverser Implantattypen werden kann.

Beter worden met ‘electroceutica’

Electroceutica kunnen helpen om allerlei aandoeningen zoals tinnitus (oorsuizen) en epilepsie te bestrijden. Electroceutica betreft het slim, lokaal en gericht toedienen van helende elektrische pulsen aan het lichaam. De technische uitdaging is het slimmer en kleiner maken van de benodigde apparatuur.

Volgens prof. Wouter Serdijn, hoogleraar bio-elektronica aan de TU Delft, kunnen ‘electroceutica’ uitgroeien tot een nieuw en belangrijk type medicijn, naast en als aanvulling op de al bestaande farmaceutica. Het gericht geven van elektrische pulsen kan bij veel aandoeningen helpen, en is niet alleen toepasbaar in de hersenen. Het grote voordeel van de elektrische methode boven farmaceutica is dat het effect lokaal is. Pillen werken in op het hele lichaam en veroorzaken derhalve snel bijwerkingen.

Op dit moment is het toedienen van elektrische pulsen aan het lichaam nog vrij grofstoffelijk, met bijvoorbeeld relatief grote batterijen en draden. Ook heeft de methode nog een vrij hoge graad van trial and error. Het streven is om een flexibel hersenimplantaat te ontwikkelen op een polymeer-substraat dat dan kan dienen als algemeen platform voor diverse typen implantaten.

Beter worden met ‘electroceutica’

Electroceutica kunnen helpen om allerlei aandoeningen, zoals tinnitus (oorsuizen) en epilepsie, te bestrijden. Dat zegt prof. Wouter Serdijn in zijn intreerede als hoogleraar bio-elektronica aan de TU Delft op woensdag 30 maart. Electroceutica betreft het slim, lokaal en gericht toedienen van helende elektrische pulsen aan het lichaam. De technische uitdaging is het slimmer en kleiner maken van de apparatuur.

Minder bijwerkingen

Volgens prof. Wouter Serdijn kunnen ‘electroceutica’ uitgroeien tot een nieuw en belangrijk type medicijn, naast en als aanvulling op de al bestaande farmaceutica. Werken farmaceutica op een chemische wijze in op het lichaam, electroceutica doen dit op een elektrische manier.
Electroceutica dienen helende elektrische pulsen aan het lichaam toe op een slimme en gerichte wijze, vooral voor aandoeningen die hun oorsprong vinden op specifieke plaatsen, in bijvoorbeeld de hersenen.Het gericht geven van elektrische pulsen kan bij veel aandoeningen helpen, en is zeker niet alleen toepasbaar in de hersenen. Het grote voordeel van de elektrische methode boven farmaceutica is dat het effect lokaal is. Pillen werken immers in op het hele lichaam en veroorzaken derhalve snel bijwerkingen.

Slimmer en kleiner

Serdijn ziet electroceutica nadrukkelijk als aanvulling op ‘gewone’ medicijnen. ‘Het gaat om het vinden van de perfecte combinatie  tussen electroceuticals en conventionele medicatie. Op dit moment is het toedienen van elektrische pulsen aan het lichaam nog vrij grofstoffelijk, met bijvoorbeeld relatief grote batterijen en draden. Ook heeft de methode nog een vrij hoge graad van trial and error.’

Een chip in zijn meet-behuizing voor het uitlezen van de neurale signalen tijdens en direct na het elektrisch stimuleren, door Cees-Jeroen Bes, in samenwerking met LUMC-KNO. Ondersteund door STW, TMSi, AB-Sys and HealthTech.

Er zijn daarom twee technische hoofddoelen, zegt Serdijn. ‘De uitdaging is het kleiner (dus ook makkelijker implanteerbaar) én slimmer maken van de apparatuur. Dat slimmere zit hem vooral in het meten van de toestand van en het aanpassen van de therapie aan een individuele patiënt. Dit patiënt-specifieke element is heel belangrijk. Want niet alleen is iedere patiënt anders, de toestand van iedere individuele patiënt varieert ook nog eens in de tijd. Door dit te meten en terug te koppelen kunnen we veel gerichter de juiste therapie instellen.’

Concreet is het doel om een flexibel hersenimplantaat te ontwikkelen op een polymeer-substraat. Dat implantaat dient dan als algemeen platform voor diverse typen implantaten.

Tinnitus

Volgens Serdijn is het (potentiële) toepassingsgebied van electroceutica zeer breed. ‘Het kan bijvoorbeeld worden ingezet voor de behandeling van onder meer tinnitus (oorsuizen), epilepsie, het syndroom van Tourette en bepaalde verslavingen. Op deze gebieden worden nu ook al successen geboekt.’
‘Neem tinnitus als voorbeeld. Wereldwijd hebben meer dan 500 miljoen mensen hier last van. Sommige patiënten kunnen worden geholpen via elektrische pulsen. Nu gebeurt die behandeling nog subjectief’, zegt Serdijn. ‘De patiënt moet zelf aangeven wat hij hoort en of er enige verlichting als gevolg van de stimulatie is opgetreden. Intelligente electroceuticals kunnen de doelmatigheid van de toegepaste therapie continu monitoren en deze aanpassen aan de behoeften van de patiënt, zelfs wanneer deze alweer op de terugweg is van het ziekenhuis.’

Symposium

Uiteraard vinden de technische ontwikkelingen plaats in nauwe samenwerking met artsen. Dit komt ook tot uiting in het symposium dat op de dag van de intreerede van Serdijn wordt gehouden. Medical Delta partners ErasmusMC en LUMC zijn goed vertegenwoordigd in het programma. Tijdens het symposium wordt bio-elektronica besproken vanuit een technologisch, een medisch, een klinisch, een industrieel en een maatschappelijk perspectief. Vijf vooraanstaande sprekers van het ErasmusMC, het LUMC, de Dunedin School of Medicine en een biomedisch bedrijf behandelen deze thema’s.
Meer informatie
Het symposium en de intreerede van prof. Serdijn.
Contact
Wouter Serdijn, prof. bio-elektronica TU Delft, W.A.Serdijn@tudelft.nl, +31 (0)15 278 1715.
Claire Hallewas, persvoorlichter TU Delft, c.r.hallewas@tudelft.nl, +31 (0)6 4095 3085.

Electronics in Neonatology

Bij Rico van Dongen, honorary member of the Bioelectronics Group

An Electronic Fetal Monitor, also known as cardiotocograph (CTG), to record the fetal heartbeat and the uterine contractions during pregnancy

On December first of last year I became the proud father of a baby boy, Wouter. Unfortunately, the pregnancy and birth did not go according to plan and my wife and I were exposed to a long period of hospitalization and a lot of medical devices.

It all started October last year when my wife was hospitalized with pre-eclampsia, a form of pregnancy related high blood pressure. The fact is there is no cure or proper treatment for this besides inducing labor and abort the pregnancy. Being only 25 weeks pregnant at the time the survival changes of the baby are already quite good thanks to modern neonatology, but certainly not without complications.

Obviously the best path for our unborn child was to extend the pregnancy for as long as possible and try to control the high blood pressure with medication. Two months of intensive hospital care and almost weekly increasing dose of medication followed.

The heartbeat of our baby was monitored daily by means of cardiotocography, CTG, to check if he could still handle the high dose of medication. The resulting graphs were, according to the doctors, sub-optimal. This resulted in the fact that my wife was connected to this CTG machine for up to 4 hours a day before the doctors were confident again that our baby was stable.

As a father confident in the strength of our child I soon blamed the machine for this sub-optimal picture. It was not long before we realized that almost all drops in heartbeat correlated with movement of the baby. As an engineer, my hands were itching with the urge to re-write the software of this machine and add an additional graph with signal quality to the output.

Weeks of endless CTG and blood pressure medication passed. By the time of the 30st week of pregnancy oral medication was nog longer sufficient and the real heavy stuff was administered through IV drip. Two weeks passed until there was no other option than to abort the pregnancy.

Although usually inducing labor is not successful at this early terms my wife managed to pull it off and finally our son was born. Although weighing only 1417g it was a strong guy that could already breath on his own. He spent only one night at the intensive care for observation before we could move him to the high-care section.

The good news only lasted half a day. After a routine ultrasound of the brains the doctors discovered a massive hemorrhage. His right ventricle was half filled with blood and the left completely filled. At the left side there was already sign of damage to brain tissue. The damage concentrated to the connections from the motor cortex to the central nerve system. The neonatologist explained to us that bleedings at premature born babies are not that uncommon, the strange thing about our case was that the bleeding already occurred before birth. Luckily the human brain, and especially the undeveloped brain of babies, is capable of finding new connections and avoid damaged regions.

There is a chance that we won’t be able to notice anything abnormal in the way our baby moves but it was clear that our days of worrying and hospital visits were long from over. But first things first, being only 1417g our boy needed to gain strength in an incubator.

The incubator is, again, a collection of medical electronics where the engineer in me would love to make some improvements. Take for example the electrodes used for monitoring the heartbeat and the sensor for measuring blood oxygen saturation. I’m not sure if it was the way of handling our baby but somehow the leads always seemed to be tangled. Small wireless sensors would be very helpful in this situation. Perhaps this is a good use for low power ultra-wide-band technology. On the other hand, it is nice to see the designers already took some effort making the electrodes fit in to the cuddly baby environment by printing cute teddy bear pictures on them.

Another one and a half month passed before out baby boy was strong enough to leave the hospital. As a final check an MRI was made. It clearly showed the damaged regions but also that the brains developed normal and that the remaining blood was gradually cleared away. At this point he is just like any other baby. There is nothing wrong with his ability to cry us awake during the night or to kick off his socks. Nevertheless, his development will be closely monitored with perhaps even more electronics.

I guess my messages to other biomedical engineers is first of all, keep up the good work. Until you need the electronics we design you don’t really realize how valuable our work is. Secondly, I think it would be helpful to try to evaluate the design from the viewpoint of the patients and medical personnel that are using your products.

Rico van Dongen, Febr. 6, 2016

Baby Wouter van Dongen

Baby Wouter van Dongen

New book: Design of Efficient and Safe Neural Stimulators – A Multidisciplinary Approach

About this book:

This book discusses the design of neural stimulator systems which are used for the treatment of a wide variety of brain disorders such as Parkinson’s, depression and tinnitus. Whereas many existing books treating neural stimulation focus on one particular design aspect, such as the electrical design of the stimulator, this book uses a multidisciplinary approach: by combining the fields of neuroscience, electrophysiology and electrical engineering a thorough understanding of the complete neural stimulation chain is created (from the stimulation IC down to the neural cell). This multidisciplinary approach enables readers to gain new insights into stimulator design, while context is provided by presenting innovative design examples.

About the authors:

Marijn N. van Dongen was born in Pijnacker, The Netherlands, in 1984. He received the M.Sc. and Ph.D. degrees in electrical engineering from the Delft University of Technology, Delft, The Netherlands, in 2010 and 2015, respectively. His research interests include the design of neural stimulator output circuits as well as the modeling of the electrophysiological and electrochemical processes during electrical stimulation. Currently he is working for NXP Semiconductors, Nijmegen, The Netherlands. Dr. van Dongen served as the Financial Chair of the IEEE BioCAS2013 Conference.

Wouter A. Serdijn (M’98, SM’08, F’11) was born in Zoetermeer (‘Sweet Lake City’), the Netherlands, in 1966. He received the M.Sc. (cum laude) and Ph.D. degrees from Delft University of Technology, Delft, The Netherlands, in 1989 and 1994, respectively. Currently, he is full professor of bioelectronics at Delft University of Technology, where he heads the Section Bioelectronics. His research interests include low-voltage, ultra-low-power and ultra wideband integrated circuits and systems for biosignal conditioning and detection, neuroprosthetics, transcutaneous wireless communication, power management and energy harvesting as applied in, e.g., hearing instruments, cardiac pacemakers, cochlear implants, neurostimulators, portable, wearable, implantable and injectable medical devices and electroceuticals.
He is co-editor and co-author of 9 books, 8 book chapters and more than 300 scientific publications and presentations. He teaches Circuit Theory, Analog Signal Processing, Micropower Analog IC Design and Bioelectronics. He received the Electrical Engineering Best Teacher Award in 2001, 2004 and 2015. Wouter A. Serdijn is an IEEE Fellow, an IEEE Distuingished Lecturer and a Mentor of the IEEE.