Category Archives: Implantables

Presentatie Wouter Serdijn en Christos Strydis bij opening academisch jaar TU Delft

Hoe kan slimme technologie helpen hersenziektes als epilepsie beter te begrijpen? En hoe kunnen sensoren, implantaten en ultrasoundtechnieken in de toekomst mogelijk helpen om epilepsieaanvallen te voorspellen en te voorkomen? Het kan wanneer verschillende disciplines nauw samenwerken.

Dit stelde Medical Delta hoogleraar prof. dr. Wouter Serdijn tijdens de opening van het academisch jaar van de TU Delft. Serdijn zette samen met dr. ir. Christos Strydis (Erasmus MC, consortiumlid Medical NeuroDelta) uiteen hoe interdisciplinair onderzoek impact kan hebben op bijvoorbeeld mensen met epilepsie.

Bekijk de keynote hier terug

Technology for health: Keynote Wouter Serdijn en Christos Strydis at the Opening of the Academic Year

In Delft and Rotterdam, Wouter Serdijn and Christos Strydis are collaborating on a network of sensors and stimulators for the body. By picking up signals and sending the brain a rapid wake-up call, they hope to be able to predict and prevent epileptic seizures.

Click here for the video of the keynote

Vasiliki Giagka on Neural Interface Packaging and why it’s the most important

https://neuralimplantpodcast.com/vasiliki-giagka-on-neural-interface-packaging-and-why-its-the-most-important

Sep 12, 2022

Vailiki Giagka is an Assistant Professor at TU Delft and Research Group Leader at Fraunhofer IZM in Berlin where she conducts research on the design and fabrication of active neural interfaces.

***This podcast is sponsored by Ripple Neuro, check out their Neuroscience Research Tools here***

Top 3 Takeaways:

  • “Water vapor is not dangerous for neural devices, it will not cause your metals to corrode, as long as it remains in the form of vapor. The moment it condenses into liquid water and you have ions in there, is when corrosion can start, and that is the beginning of the end”
  • Conformal polymer coatings have been implanted in bodies for decades but we lack means to prove upfront the amount of time a certain coated device would last in the body
  • “Our aim is not to create startup ourselves, but it is really to help this ecosystem by supporting companies working on this”

0:30 “How do you work in Berlin and the Hague in the Netherlands at the same time?

2:30 “Why especially neural device packaging?”

5:15 “What’s the size of your guys’ device or packing?”

7:15 “Do you want to, do you wanna describe the neural implant network mesh a little bit more and how does it work and why is it necessary?” 

9:15 Sponsorship by Ripple Neuro

9:45 “So let’s talk about maybe conformal coatings. What is it, how does it work? Why is it necessary?”

19:00 “So what are some rough numbers, is one method better than the other, and then how many years of simulated life can one survive versus the other?”

21:45 “So how do we test it? How do we do the accelerated testing to be able to simulate a human lifespan?”

25:00 “So now you also work on the wireless power delivery, wireless transmission. How is this, how does this work? Why is this important?”

31:00 “Neurons fire with electrical signals and you’re using ultrasound. So how does that work? Why is it able to work?”

32:00 “How does the power usage compare with electrical or ultrasound cuffs?”

33:30 “Let’s talk about your graphene work.”

37:30 “These three areas that you’re working on, these all seem like very good candidates for, a spinoff company or some kind of, patents. Have you thought about this?”

42:00 “If you had unlimited funding, what would you do?”

43:45 “Is there anything that we didn’t talk about that you wanted to mention?”

Altijd geld bij de band, met een betaalchip onder je huid

HARDWARE

In de onstuitbare opmars van het contactloos betalen zet een Pools bedrijf de volgende stap: een betaalchip onder de huid, geen apparaat meer nodig. Wie wil dat? Brigitte heeft er al een.

null Beeld Ines Vansteenkiste-Muylle - nagels: Catya Poncin / Lakwerk

Beeld Ines Vansteenkiste-Muylle – nagels: Catya Poncin / Lakwerk

‘Je voelt er niks van’, verzekert Brigitte van Gestel. ‘Ik had al een chip in mijn hand om onder andere deuren mee te openen, die voelt aan als een rijstkorreltje onder de huid. De betaalchip is plat en flexibel, je ziet hem alleen als ik mijn pols buig.’

Van Gestel liet twee maanden geleden een betaalchip van het Poolse bedrijf Walletmor onder de huid schuiven. Die is gekoppeld aan een account van iCard, een Bulgaarse onlinebank. Het is een passieve chip, net als die op een pinpas: je kunt er contactloos mee betalen door je hand vlak bij een betaalautomaat te houden. Bij bedragen boven de 50 euro moet je wel een pincode intoetsen.

Altijd een betaalmiddel bij de hand hebben dat niet zoek kan raken, dat is het idee van de onderhuidse betaalchip. Van Gestel (49) is mede-eigenaar van de Tilburgse tatoeage- en piercingstudio The Tattooshop. Haar echtgenoot Frank heeft de paperclipvormige chip sinds eind oktober bij twintig mensen ingebracht. Zij kunnen nu contactloos betalen en pinnen op alle locaties die Mastercard en Visa accepteren. Van Gestel is de enige in Nederland die de betaalchips plaatst. Volgens Walletmor lopen er ongeveer vijfhonderd Europeanen rond met de onderhuidse betaalchip.

Verpakt

De technologie is niet wereldschokkend, zegt Wouter Serdijn, hoogleraar bio-elektronica in Delft. ‘Het is vergelijkbaar met een ov-chipkaart, of een betaalpas, maar dan wat anders verpakt, zodat het gedijt in het menselijk lichaam. De chip moet hermetisch afgesloten zijn en niet gaan lekken, want de chip kan niet tegen menselijke vloeistoffen en het lichaam kan niet tegen de materialen in een chip, zoals arseen, fosfor, of aluminium.’ De chip zit daarom verpakt in een biopolymeer, zoals ook bij pacemakers bijvoorbeeld gebruikelijk is. ‘Ik weet niet precies hoe ze dat hebben gedaan, maar dat is een standaardproces dat inmiddels wel bedrijfszeker en veilig is’, zegt Serdijn.

De betaalchip van Walletmor, hier nog op de huid in plaats van eronder. Beeld Walletmor / Maciej Kaczanowski

De betaalchip van Walletmor, hier nog op de huid in plaats van eronder.Beeld Walletmor / Maciej Kaczanowski

De chip werkt op basis van near-field communication (NFC): een kleine antenne zendt zelf geen signalen uit, maar kan deze wel reflecteren wanneer een actieve zender zich op enkele centimeters afstand bevindt. ‘Je kunt dus niet op afstand in de gaten houden waar iemand zich bevindt en de gebruikte frequenties en het energieniveau zijn zo laag dat er geen interactie is met het lichaam.’ De chip is dus veilig en ongevoelig voor diefstal of verlies.

Toch is het risico van de onderhuidse chip niet volledig nul, waarschuwt Serdijn. ‘Als iemand je een hand geeft met een chiplezer in een handschoen, kan hij je nog steeds bestelen.’ Daarvan zijn overigens geen gevallen bekend. Gezien de betaallimiet en het beperkte aantal gebruikers is het ook nogal de vraag of het alle moeite wel zou lonen. De betaalapp iCard staat volgens De Nederlandsche Bank onder toezicht van de nationale bank van Bulgarije, wat gebruikers de zekerheid geeft dat hun geld veilig is, ook als iCard failliet zou gaan.

Contactloos betalen

Voor zover bekend is Walletmor het enige bedrijf dat een onderhuidse betaalchip aanbiedt. Die mag vooralsnog niet erg in zwang zijn, contactloos betalen is wel in opmars. Deels komt dat doordat de overheid contant betalen tijdens de eerste lockdown in 2020 ontmoedigde en banken de limiet voor betalen zonder pincode verruimden tot 50 euro. Vóór die tijd betaalden we in 30 procent van de gevallen nog met contant geld, sindsdien is dat gedaald tot 20 procent.

Negen van de tien pinbetalingen verlopen contactloos en daarvan gebeurt weer bijna een kwart kaartloos, vertelt Berend Jan Beugel, woordvoerder van de Betaalvereniging Nederland. Vooral betalingen met smartphones en smartwatches winnen aan populariteit. ‘De smartphone is nu al zo’n middelpunt van allerlei transacties, dat het erg voor de hand ligt om ook betalingen met de telefoon te doen. Apple Pay en Google Pay maken het allemaal nog makkelijker. Big Tech is nou eenmaal beter in het ontwikkelen van apps die op alle types telefoons werken dan banken.’

Contactloos betalen met de chip van Walletmor. Beeld Walletmor / Piotr Dejneka

Contactloos betalen met de chip van Walletmor.Beeld Walletmor / Piotr Dejneka

Smartphones en smartwatches zijn actieve betaalmiddelen: de gebruiker kan met een code of vingerafdruk op de telefoon of het horloge zelf toestemming geven voor een betaling. Passieve betaalmiddelen vereisen boven een bepaald bedrag het intoetsen van een pincode op de betaalautomaat. De onderhuidse chip is daarvan een voorbeeld, maar er zijn ook ringen, horloges en andere wearables die deze mogelijkheid bieden. Zo biedt ABN Amro klanten de keuze uit ruim 250 draagbare gadgets met passieve betaalchips. De wearables werken als betaalkaarten die niet in een gleuf passen, maar contactloos betalen vergemakkelijken.

‘Leuke gimmick’

Voor onderhuidse betaalchips lopen de Nederlandse banken vooralsnog niet erg warm. ‘Het is een leuke gimmick’, zegt Beugel, ‘maar banken beschouwen het niet als een normaal betaalmiddel. Het is een nogal invasieve manier van betalen en er is weinig vraag naar.’ Interessanter vindt hij de experimenten met kassaloze winkels van bepaalde supermarkten. Zo plaatste Albert Heijn eind vorig jaar enkele maanden een containerwinkel op Schiphol, waarbij klanten alleen voor binnenkomst hun kaart (of wearable) presenteren. Camera’s, computers en gewichtssensoren houden vervolgens bij wat de klanten in hun mandje doen en afrekenen gebeurt aan het eind van de rit automatisch. Er zijn nog geen plannen om het concept op grotere schaal in te voeren.

Hoewel Van Gestel haar kerstinkopen de komende tijd met haar pols zou kunnen betalen, is het haar niet te doen om dat soort gebruikelijke aankopen. ‘Ik heb een bedrag van 1.000 euro op de chip gezet en daar kom ik eigenlijk niet aan. Ik heb het echt gedaan voor als ik ooit in nood kom: als ik ergens strand, of op vakantie overvallen word, of mijn spullen zijn gestolen op de Dam in Amsterdam, of wat dan ook. Dan heb ik altijd die duizend euro en dan kan ik altijd thuiskomen. Dat vind ik gewoon een heel fijn idee.’

Hoe kunnen we de verbinding tussen hersenen en spieren herstellen?

Voor mensen met hart-, zenuw- en breinaandoeningen kunnen bio-elektronische medicijnen een belangrijk verschil maken. Wouter Serdijn werkt aan deze piepkleine apparaatjes. Hij is hoogleraar aan de TU Delft en dankzij Medical Delta nu ook aan het Erasmus MC.

“Een voorbeeld waar we aan werken, is mensen met een verlamming helpen bij het terugkrijgen van hun houding bij zitten, staan of een rudimentaire vorm van lopen. Dat kan nu vooral met een rolstoel of andere hulpmiddelen. Maar ik wil weten hoe we de eigen spieren, die nog wel intact zijn maar niet meer worden aangestuurd, weer kunnen aanzetten.”

Lees hier meer over het werk van Wouter: https://lnkd.in/dudR9SZA

[youtube]https://youtu.be/6SnjVyWWOxo[/youtube]

TU Delft | Health Initiative #Healthtech #Health #Medtech #Healthinnovation

Chips, vaccines and conspiracy theories

SCIENCE 11 juni 2021 – 09:15 door Tomas van Dijk @tomasvd
The researchers did not anticipate the fuss their publication would cause on social media. (Photo: Lindsay Mackenzie/WHO)
Conspiracy theories about chips injected with vaccines are incited by a photo of a microchip made by US scholars and Tiago Costa of TU Delft. “We didn’t see the fuss coming.” No we are not involved in a conspiracy to chip the world‘s population while injecting vaccines. Really? No, we’re not. You would expect a query like this in a satirical magazine. Yet the Director of Strategic Communications and Media Relations at Columbia University had to answer question like this by Reuters. “This research has nothing to do with Covid-19 and vaccinations,” she told the news organisation. She was asked by Reuters to debunk the rumour that her university was in any way complicit in such a conspiracy. What prompted all this? A photo of a microchip designed by Columbia University engineers that is doing the rounds among vaccine sceptics. Posts show a picture of the microchip inside the tip of a needle, with captions and comments suggesting a connection with the Covid-19 vaccine. Chipping people would be Bill Gates’ wet dream, many people believe. The comments include: “I heard if a person had the Moderna vaccine, a strong magnet would stick to the arm where the injection was given” and “I’m not taking no bullshit Covid-19 vaccine”.
Is it a hoax? No, not that either. The photo is from a 7 May publication in Science Advances entitled ‘Application of a sub–0.1 mm3 implantable mote for in vivo real-time wireless temperature sensing’. One of the authors is Tiago Costa of the Microelectronics Department (Faculty EEMCS), who until recently worked at Columbia University and is now continuing his research on wireless, miniaturised implantable medical devices at TU Delft. “We have created a microchip that can be inserted with a needle,” says Costa. “It is the world’s smallest single-chip system, with a volume of less than 0.1 mm3. It uses ultrasound to measure vital signs. Or at least that is the idea. Currently it only measures temperature. But we are working on more diagnostic and therapeutic medical procedures.” The device has been successfully tested on mice. To date, conventional implanted electronics have been highly volume-inefficient – they generally require multiple chips, packaging, wires, and external transducers, and batteries are often needed for energy storage. A constant trend in electronics has been the tighter integration of electronic components, often moving more and more functions onto the integrated circuit itself. As big as a grain of salt The researchers pushed the limits on how small a functioning chip could be made. Measuring just 0.1 mm3, the chip can barely be seen with the naked eye. It is as big as a grain of salt. The research started several years ago, long before conspiracy theories about chips and vaccines were around. “That the publication came out now, during the height of the vaccination campaigns, is an unfortunate coincidence,” says Costa. He says that neither he nor his colleagues saw the fuss coming. “We were so enthusiastic about our findings, we didn‘t give a moment’s thought to how the study would be seen. I guess you can call us naïve,” he says laughing. But what more grounds are there to debunk the conspiracy theory, aside from the simple fact that it is not clear what motive the researchers would have to make everyone walk on the leash of Bill Gates? For starters, most of the needles used for Covid-19 vaccinations are the relatively thin so-called 25 Gauge needles and the chips don’t fit through these needles. To be injected they need syringes that are a notch bigger.
‘Bioelectronic medicine is booming’
Addressing concerns about the chip being used wirelessly in the future with 5G, Ken Shepard,  Professor of Electrical and Biomedical Engineering at Columbia and a researcher on the project, told Reuters that the device does not use electromagnetics. ‘It uses ultrasound, meaning that you have to be interacting with an ultrasound imaging device for the chip to be powered or communicate.’ Delta Tomas van Dijk @tomasvd Redacteur For questions/comments, email me at: tomas.vandijk@tudelft.nl Read more about: #MEDICINE #CORONAVIRUS #MEDICAL-ENGINEERING

The rising stars of the TU Delft, featuring …

Dante Muratore

After his PhD in what he calls “hardcore analogue microelectronics”, rising star Dante Muratore knew he wanted to continue his career working on systems that are closer to an actual application. A postdoc position at Stanford University, in which he worked on the electronics for an artificial retina to treat medical conditions leading to the loss of vision, brought him just that. Then, wanting to come back to Europe and to continue doing bioelectronics at the highest level possible, an opening at TU Delft crossed his path. ‘It was the easiest choice I ever made,’ he says.

Brain-machine interfaces

As assistant professor within the Bioelectronics group, the central theme of Muratore’s research is to build brain-machine interfaces. In the first few years of his tenure, he will continue development of the artificial retina and also work on applications related to the motor cortex – ultimately allowing treatment of, for example, paralysis and locked-in syndrome. ‘Our aim is to interface with individual cells of the nervous system, also taking into account each neuron’s cell type,’ he says. ‘For the retina, it is mostly about stimulating these neurons so they will send the correct signal to the brain. For the motor cortex, we record the information coming from the brain, which indicates the intention of movement. We then want to use that information to control an external device, such as a mouse cursor or a robotic arm. We are also considering implementing feedback to the motor cortex as this may provide the user with a sense of body position.’

We aim for our brain-machine interfaces to interact with individual cells of the nervous system, also taking into account each neuron’s cell type.

― Dante Muratore

A staggering amount of data

As they will be implanted, these brain-machine interfaces need to be small – the artificial retina device has the size of a pea. Yet, they need to manage massive amounts of data, comparable to streaming a hundred HD Netflix movies at once. Muratore closely collaborates with neuroscientists. ‘Basically, I need them to tell me how bad a job I can do at managing these data for the device to still operate as intended, so I can reduce overall power consumption.’ He also interacts with the people specialised in signal processing to determine, for example, if data compression should be integrated close to the (neural) sensor or if it is better to take it off-chip. ‘The biggest challenge, however, is not a scientific one,’ he says. ‘Each sub-problem requires a completely different academic specialty to design a solution – typically an incredibly complicated one. At the end of the day, you need to put these together to work as a single machine. This is a very challenging engineering problem.’

An implantable brain-machine interface has to be very small, yet able to handle massive amounts of data.

― Dante Muratore

Happy in the Medical Delta

Muratore is very happy with the Medical Delta and the ongoing convergence with Erasmus University and Medical Centre. ‘A brain-machine interface really is not a one-man job,’ he says. ‘You want these medical and technical disciplines to mingle, to have lunch together over which to share the problems we run into. We need to truly understand each other and speak the same language.’ Having arrived pretty much with the country in lockdown, he hasn’t yet been able to build strong multi-disciplinary collaborations. But next month, he is expecting to hear about the Marie Curie grant proposal he submitted. ‘My group leader, Wouter Serdijn, has also involved me in the writing of a couple of large NWO grants. Bringing young people on board is one of the things that is great about TU Delft.’

Microimplants: electricity instead of pills

Interview with Prof. Vasiliki Giagka, Group Leader “Technologies of Bioelectronics”, Fraunhofer Institute for Reliability and Microintegration IZM and Assistant Professor of Bioelectronics, Delft University of Technology

In MEDICA Magazine, 23.11.2020

Image: Prof. Vasiliki Giagka; Copyright: privat

Prof. Vasiliki Giagka

Image: Microimplantat; Copyright: Fraunhofer IZM

Elektronica: het medicijn van de toekomst

Hoe bioelektronica de kwaliteit van leven kan vergroten en wat ons nog tegenhoudt in de brede toepassing ervan.

Geschreven door Jill van Remundt,
masterstudent Wetenschapscommunicatie en Industrieel Ontwerpen aan de TU Delft.

Ik was ongeveer 4 maanden oud toen ik met mijn ouders naar Griekenland vloog. Het was de bedoeling om uit te rusten tijdens een ontspannen vakantie aan zee. Uiteindelijk werd het een hel voor mijn vader en is zijn leven daarna nooit meer hetzelfde geworden.

Tijdens die vakantie in Griekenland kreeg hij de eerste symptomen van wat later zou worden gediagnostiseerd als de Ziekte van Ménière. Hij was misselijk, erg duizelig en het enige dat hielp was in bed liggen en slapen. Mijn moeder bleef bij hem in het appartementje terwijl ze in haar eentje op mij, als kleine baby, moest passen.

Nu ruim 24 jaar later zijn de gevolgen van de ziekte nog altijd aanwezig. Mijn vader hoort een constante ruis in zijn oor die nooit meer weg zal gaan. Ook is hij aan zijn linkeroor bijna geheel doof. Hij heeft ermee leren leven, het is een onderdeel van hem geworden, maar heeft er nog dagelijks last van. Een van zijn grootste passies, muziek, heeft een andere betekenis gekregen in zijn leven.

De gevolgen van tinnitus

Mijn vader is niet de enige met deze ervaring. Er wordt geschat dat in Nederland tussen de 10.000 tot 15.000 mensen lijden aan de Ziekte van Ménière [1]. Tinnitus (oorsuizen) kan het gevolg zijn van de Ziekte van Ménière, maar heeft ook andere oorzaken. Mensen die aan tinnitus lijden horen vaak bijna onafgebroken geluid. Dit geluid kan bijvoorbeeld geruis, gepiep, gerinkel of gebonk zijn. 10 tot 15 procent van de bevolking heeft (wel eens) last van tinnitus [2]. In 2017 ging het dus om 1.7 tot bijna 2.6 miljoen Nederlanders. Voor 1 tot 2% van de bevolking vormt het horen van constant geluid aanzienlijke hinder en wordt het gezien als groot probleem [3].

Wouter Serdijn, professor bioelektronica en hoofd van de sectie Bioelektronica aan de TU Delft, vertelt me het verhaal van Gaby Olthuis. Op het eerste gezicht leek ze een gezonde en gelukkige vrouw. Ze leed echter aan tinnitus en hoorde een constante pieptoon in haar hoofd. Daarnaast was ze overgevoelig voor buitengeluid. ‘Ik zit klem in geluid,’ zei ze hier zelf over in een rapportage van Omroep West [4]. Voor Gaby was geluid en de tinnitus zo’n kwelling, dan ze met behulp van euthanasie in 2014 een eind aan haar leven heeft gemaakt.

Bioelektronica als medicijn

Serdijn vertelt me het verhaal van Gaby omdat dit soort voorbeelden voor hem de motivatie vormen voor zijn werk. Binnen de bioelektronica groep op de TU Delft houden professoren, onderzoekers en studenten zich bezig met de (biomedische) toepassing van elektronische implantaten en elektronische medicijnen. Het oudste voorbeeld van een elektronisch implantaat is de pacemaker.

Chemische medicatie (denk aan bijvoorbeeld tabletten of capsules) kan worden gezien als een ‘lichaamsvreemde’ stof die via de bloedbaan wordt verspreid en een interactie aangaat met de biologische systemen in het lichaam. Elektronische medicatie daarentegen, probeert een ziekte of aandoening te onderdrukken door het elektronisch stimuleren van spieren of het zenuwstelsel. Een voordeel van deze methode is dat de behandeling veel gerichter kan worden ingezet op het aangetaste gebied in het lichaam. Waarbij chemische medicatie zich in de bloedbaan door het hele lichaam kan verplaatsen, en een interactie kan aangaan met allerlei organen, focust elektronische medicatie zich op een specifieke spier of zenuw(groep).

Bioelektronica kan een hulpmiddel zijn voor de behandeling van diverse aandoeningen en ziektes. Het is bijvoorbeeld mogelijk om het ongecontroleerd trillen van Parkinsonpatiënten te onderdrukken waardoor deze mensen weer zelf dingen kunnen oppakken. In bepaalde mate is het mogelijk om het geruis veroorzaakt door tinnitus te onderdrukken of weren. Maar ook is bioelektronica tot dingen in staat die verder reiken dan de mogelijkheden van chemische medicatie. Zo is het op dit moment al mogelijk om blinden hun zicht terug te geven en om doven weer geluiden te laten horen [5]. Het is de ambitie van Serdijn om de kwaliteit van leven voor mensen met een aandoening of ziekte te verbeteren. Mensen die hinder ervaren of soms zelfs ondragelijk lijden, zoals in het geval van Gaby, die geen enkele kwaliteit van leven meer ervaarde.

Bioelektronica nog beperkt toegepast

Technologisch gezien is er al een hoop mogelijk, vertelt Serdijn mij, maar een hoop toepassingen zijn nog niet uitgebreid genoeg getest om te kunnen worden geïmplementeerd in behandelingen. Ook spelen de richtlijnen en test-eisen in de medische wereld een rol bij de huidige beperktheid van behandelingsopties. Maar dat is niet alles zegt hij, ‘de behandelaars zelf weten vaak ook nog niet goed wat er al mogelijk is.’

En dan is er nog een vierde reden waardoor bioelektronica en elektrische medicijnen nog niet op brede schaal worden toegepast. ‘Veel mensen zijn bang dat ze gehackt of bestuurd kunnen worden,’ vertelt Serdijn. Recent had hij een journalist aan de telefoon die vroeg; ‘kan Google nou in ons hoofd?’ ‘Die vragen, die leven er,’ zegt hij. Ook nu tijdens de Covid-19 pandemie: mensen zijn bang dat ze in de gaten zullen worden gehouden door een chip in het vaccin. ‘Technologisch kan dat niet eens,’ vertelt Serdijn [*]. ‘Maar je kunt die mensen dat niet uitleggen. Zij zeggen dan, ‘jij bent wetenschapper, dat is ook maar een mening.’’

Het medicijn van de toekomst

De brede toepassing van de bioelektronica en elektronische medicijnen wordt dus niet vertraagd door de snelheid van de innovatieve ontwikkelingen. Het wordt vertraagd omdat nog te weinig bekend is over de langetermijngevolgen, door het lange medische traject van testen, omdat behandelaars vaak niet op de hoogte zijn van de mogelijkheden en omdat mensen sceptisch of zelfs angstig zijn als het gaat om elektronica in hun lichaam. Al die redenen zijn in meerdere of mindere mate begrijpelijk, maar dagelijks zouden de biomedische toepassingen van bioelektronica heel veel mensen een verhoogde kwaliteit van leven kunnen brengen. Was er eerder al meer mogelijk geweest, dan was Gaby Olthuis er nu misschien nog.

Verhalen als die van Gaby zullen Wouter Serdijn blijven drijven om door te gaan met zijn werk en onderzoek. Hij doet zijn best om de neurowetenschappers betere technologie te kunnen geven om de hersenen te onderzoeken en de behandelaars wil hij mogelijkheden toereiken om beter te kunnen behandelen. Zo wordt er op het gebied van bioelektronica in de toekomst hopelijk meer mogelijk en is er misschien nog een kans dat mijn vader in de toekomst opnieuw kan genieten van muziek zoals hij dat vroeger deed.