Altijd geld bij de band, met een betaalchip onder je huid

HARDWARE

In de onstuitbare opmars van het contactloos betalen zet een Pools bedrijf de volgende stap: een betaalchip onder de huid, geen apparaat meer nodig. Wie wil dat? Brigitte heeft er al een.

null Beeld Ines Vansteenkiste-Muylle - nagels: Catya Poncin / Lakwerk

Beeld Ines Vansteenkiste-Muylle – nagels: Catya Poncin / Lakwerk

‘Je voelt er niks van’, verzekert Brigitte van Gestel. ‘Ik had al een chip in mijn hand om onder andere deuren mee te openen, die voelt aan als een rijstkorreltje onder de huid. De betaalchip is plat en flexibel, je ziet hem alleen als ik mijn pols buig.’

Van Gestel liet twee maanden geleden een betaalchip van het Poolse bedrijf Walletmor onder de huid schuiven. Die is gekoppeld aan een account van iCard, een Bulgaarse onlinebank. Het is een passieve chip, net als die op een pinpas: je kunt er contactloos mee betalen door je hand vlak bij een betaalautomaat te houden. Bij bedragen boven de 50 euro moet je wel een pincode intoetsen.

Altijd een betaalmiddel bij de hand hebben dat niet zoek kan raken, dat is het idee van de onderhuidse betaalchip. Van Gestel (49) is mede-eigenaar van de Tilburgse tatoeage- en piercingstudio The Tattooshop. Haar echtgenoot Frank heeft de paperclipvormige chip sinds eind oktober bij twintig mensen ingebracht. Zij kunnen nu contactloos betalen en pinnen op alle locaties die Mastercard en Visa accepteren. Van Gestel is de enige in Nederland die de betaalchips plaatst. Volgens Walletmor lopen er ongeveer vijfhonderd Europeanen rond met de onderhuidse betaalchip.

Verpakt

De technologie is niet wereldschokkend, zegt Wouter Serdijn, hoogleraar bio-elektronica in Delft. ‘Het is vergelijkbaar met een ov-chipkaart, of een betaalpas, maar dan wat anders verpakt, zodat het gedijt in het menselijk lichaam. De chip moet hermetisch afgesloten zijn en niet gaan lekken, want de chip kan niet tegen menselijke vloeistoffen en het lichaam kan niet tegen de materialen in een chip, zoals arseen, fosfor, of aluminium.’ De chip zit daarom verpakt in een biopolymeer, zoals ook bij pacemakers bijvoorbeeld gebruikelijk is. ‘Ik weet niet precies hoe ze dat hebben gedaan, maar dat is een standaardproces dat inmiddels wel bedrijfszeker en veilig is’, zegt Serdijn.

De betaalchip van Walletmor, hier nog op de huid in plaats van eronder. Beeld Walletmor / Maciej Kaczanowski

De betaalchip van Walletmor, hier nog op de huid in plaats van eronder.Beeld Walletmor / Maciej Kaczanowski

De chip werkt op basis van near-field communication (NFC): een kleine antenne zendt zelf geen signalen uit, maar kan deze wel reflecteren wanneer een actieve zender zich op enkele centimeters afstand bevindt. ‘Je kunt dus niet op afstand in de gaten houden waar iemand zich bevindt en de gebruikte frequenties en het energieniveau zijn zo laag dat er geen interactie is met het lichaam.’ De chip is dus veilig en ongevoelig voor diefstal of verlies.

Toch is het risico van de onderhuidse chip niet volledig nul, waarschuwt Serdijn. ‘Als iemand je een hand geeft met een chiplezer in een handschoen, kan hij je nog steeds bestelen.’ Daarvan zijn overigens geen gevallen bekend. Gezien de betaallimiet en het beperkte aantal gebruikers is het ook nogal de vraag of het alle moeite wel zou lonen. De betaalapp iCard staat volgens De Nederlandsche Bank onder toezicht van de nationale bank van Bulgarije, wat gebruikers de zekerheid geeft dat hun geld veilig is, ook als iCard failliet zou gaan.

Contactloos betalen

Voor zover bekend is Walletmor het enige bedrijf dat een onderhuidse betaalchip aanbiedt. Die mag vooralsnog niet erg in zwang zijn, contactloos betalen is wel in opmars. Deels komt dat doordat de overheid contant betalen tijdens de eerste lockdown in 2020 ontmoedigde en banken de limiet voor betalen zonder pincode verruimden tot 50 euro. Vóór die tijd betaalden we in 30 procent van de gevallen nog met contant geld, sindsdien is dat gedaald tot 20 procent.

Negen van de tien pinbetalingen verlopen contactloos en daarvan gebeurt weer bijna een kwart kaartloos, vertelt Berend Jan Beugel, woordvoerder van de Betaalvereniging Nederland. Vooral betalingen met smartphones en smartwatches winnen aan populariteit. ‘De smartphone is nu al zo’n middelpunt van allerlei transacties, dat het erg voor de hand ligt om ook betalingen met de telefoon te doen. Apple Pay en Google Pay maken het allemaal nog makkelijker. Big Tech is nou eenmaal beter in het ontwikkelen van apps die op alle types telefoons werken dan banken.’

Contactloos betalen met de chip van Walletmor. Beeld Walletmor / Piotr Dejneka

Contactloos betalen met de chip van Walletmor.Beeld Walletmor / Piotr Dejneka

Smartphones en smartwatches zijn actieve betaalmiddelen: de gebruiker kan met een code of vingerafdruk op de telefoon of het horloge zelf toestemming geven voor een betaling. Passieve betaalmiddelen vereisen boven een bepaald bedrag het intoetsen van een pincode op de betaalautomaat. De onderhuidse chip is daarvan een voorbeeld, maar er zijn ook ringen, horloges en andere wearables die deze mogelijkheid bieden. Zo biedt ABN Amro klanten de keuze uit ruim 250 draagbare gadgets met passieve betaalchips. De wearables werken als betaalkaarten die niet in een gleuf passen, maar contactloos betalen vergemakkelijken.

‘Leuke gimmick’

Voor onderhuidse betaalchips lopen de Nederlandse banken vooralsnog niet erg warm. ‘Het is een leuke gimmick’, zegt Beugel, ‘maar banken beschouwen het niet als een normaal betaalmiddel. Het is een nogal invasieve manier van betalen en er is weinig vraag naar.’ Interessanter vindt hij de experimenten met kassaloze winkels van bepaalde supermarkten. Zo plaatste Albert Heijn eind vorig jaar enkele maanden een containerwinkel op Schiphol, waarbij klanten alleen voor binnenkomst hun kaart (of wearable) presenteren. Camera’s, computers en gewichtssensoren houden vervolgens bij wat de klanten in hun mandje doen en afrekenen gebeurt aan het eind van de rit automatisch. Er zijn nog geen plannen om het concept op grotere schaal in te voeren.

Hoewel Van Gestel haar kerstinkopen de komende tijd met haar pols zou kunnen betalen, is het haar niet te doen om dat soort gebruikelijke aankopen. ‘Ik heb een bedrag van 1.000 euro op de chip gezet en daar kom ik eigenlijk niet aan. Ik heb het echt gedaan voor als ik ooit in nood kom: als ik ergens strand, of op vakantie overvallen word, of mijn spullen zijn gestolen op de Dam in Amsterdam, of wat dan ook. Dan heb ik altijd die duizend euro en dan kan ik altijd thuiskomen. Dat vind ik gewoon een heel fijn idee.’

Elektronische Kwakzalverij (deel 2): biofotontherapie met de Chiren ontwikkeld door Johan Boswinkel

Trap er alsjeblieft niet in: biofotonentherapie met behulp van de Chiren.

Biofotonen zijn niet meetbaar middels bio-impedantie. Cellen produceren geen coherent licht en daarmee is de coherentie-behandelmethode onjuist. Het hele concept van helende frequenties die opnieuw aan het lichaam kunnen worden aangeboden is onjuist.

De volgende websites bevatten onjuiste informatie en zijn misleidend:

https://www.alternatievegeneeswijzen-info.nl
https://www.better-events.nl
https://www.bewusthaarlem.nl
http://www.biobrein.nl
https://www.biofotonen.com
http://www.biofotonentherapie.net
https://www.biofotonen-therapie.nl/
https://www.biolithe.nl
https://www.biolithe.nl
http://www.biontology.com
https://biophotonenhoofddorp.nl
https://www.biori.nl/
https://deelbewust.com
http://www.divalis.nl/
https://drdietrich.ch
https://energiekevrouwenacademie.nl
https://www.foryoumagazine.nl
https://www.lichtopvitaliteit.nl
https://www.liefdevolgelukkigzijn.nl
https://m.light4health.nl
https://www.lightfulness.nl
https://www.luxspiritus.nl
https://mens-en-gezondheid.infonu.nl
https://www.neurovisie.com
https://www.osteopathie-movere.com
https://praktijklichtpunt.nu
https://praktijkkerngezond.nl
https://purepresence.nl
https://www.quantum-reaction.nl
https://santura.nl
https://www.sardonyx.eu
https://universele-energie.com
https://www.veldweg3.nl
https://www.webwiki.nl/immuun-therapie
https://ydemdito.nl/
https://yocama.nl

Lees ook: Digitale kwakzalverij: het OBERON NLS diagnose-systeem van Metavital
Of: Valse medische claims achter de Healy

In de gedeelde fascinatie voor het probleem vinden we elkaar

Voor mensen met hart-, zenuw- en breinaandoeningen kunnen bio-elektronische medicijnen een belangrijk verschil maken. Prof. dr. ir. Wouter Serdijn werkt aan deze piepkleine apparaatjes. Hij is hoogleraar aan de TU Delft en dankzij Medical Delta nu ook aan het Erasmus MC. “Technische disciplines gaan vaak uit van objectieve maten, terwijl geen enkel mens dezelfde is. Het is daarom belangrijk om ook de subjectieve kant in het ontwerp mee te nemen.”

(For English, click here).

In de video hieronder vertelt Wouter Serdijn over zijn Medical Delta hoogleraarschap:

[youtube]https://youtu.be/6SnjVyWWOxo[/youtube]

“Ik werkte altijd al veel samen, maar met mijn benoeming in Rotterdam is dat meer geformaliseerd”, vertelt Serdijn. “Ik heb nu ook het ‘recht’ om daar rond te lopen en zit in de informatiestroom. Deze structuur past goed bij hoe ik gewend ben om te werken. Niet uitgaan van bestaande hokjes, maar samenwerken op een overkoepelend niveau. Medical Delta is een bundeling van geweldige mensen, zowel technisch, medisch als klinisch-wetenschappelijk. De ingenieur, medisch wetenschapper en behandelaar vormen een driehoek. Samen kunnen ze maken wat het beste is voor een patiënt.”

Hoe is je interesse in het medische werkveld ontstaan?

“Voor mijn afstudeerproject werkte ik aan gehoorapparaten samen met een techbedrijf. Ik maakte mee dat iets technisch perfect aan de specificaties voldeed, maar totaal niet om aan te horen was en botste zo tegen de grenzen van het technisch domein. Technische disciplines gaan vaak uit van objectieve maten, terwijl geen enkel mens dezelfde is en een individueel mens is morgen ook weer anders. Het is daarom belangrijk om ook de subjectieve kant in het ontwerp mee te nemen.”

Hoe draag je met jouw kennis van bio-elektronica bij aan medische wetenschap?

“Ik weet niet precies hoe het lichaam in elkaar zit, maar ik kan wel helpen dit te meten, te onderzoeken en te sturen. Ik kan zenuwbanen lezen en schrijven. Een voorbeeld waar we aan werken is mensen met een verlamming helpen bij het terugkrijgen van hun houding bij zitten of staan en een rudimentaire vorm van lopen. Dat kan nu vooral met een rolstoel of andere hulpmiddelen. Maar ik wil weten hoe we de eigen spieren, die nog wel intact zijn maar niet meer worden aangestuurd, weer kunnen aanzetten. Hoe kunnen we de verbinding tussen hersenen en spieren herstellen? We gaan hiervoor binnenkort starten met klinische tests.

Ook wil ik bijdragen aan implanteerbare technologie die iemand zoveel mogelijk onzichtbaar kan meedragen. Bijvoorbeeld het zogeheten cochleair implantaat. Dit apparaatje stelt een doof iemand in staat om te kunnen horen en daardoor ook om spraak te ontwikkelen. Maar deze implantaten hebben nu nog een uitwendig deel. Dit moet je bijvoorbeeld afdoen als je gaat zwemmen of douchen en dan hoor je dus ook niets meer. Ik wil dat verbeteren. Ook kun je met dit implantaat wel gesprekken horen, maar niet naar muziek luisteren. Dat kan zelfs een heel onaangename ervaring zijn. Dat vind ik zo zonde; het is echt een gemis als je niet van muziek kunt genieten. Ook dat wil ik aanpakken.”

Hoe zie je Medical Delta in de toekomst?

“Over tien jaar is Medical Delta een wetenschappelijke hoogvlakte. Met connecties en aanzien in Nederland, Europa en misschien wel de rest van de wereld. Het is het zenuwcentrum van een heleboel activiteiten. Ook de onderwijscomponent speelt daarbij een belangrijke rol, bijvoorbeeld met de opleiding klinische technologie. Daar komen al heel goede dingen en mensen uit voort en ik heb daar hoge verwachtingen van. Want wetenschap is één ding, maar het opleiden van nieuw talent in de gecombineerde disciplines, daar zit de vermenigvuldigingsfactor. Per jaar komen er nu bijna honderd afgestudeerden bij. Die gaan straks een grotere impact hebben dan de Medical Delta hoogleraren van nu. Zij zijn de toekomst.”

Wat is jouw tip voor succesvolle samenwerking?

“Blijf verbonden met waar je vandaan komt. Daar ligt je waarde en je kracht. Je moet een brug slaan, maar blijf trouw aan waar je goed in bent. Ook moet er bij samenwerking een oprechte wederzijdse interesse zijn en je moet er beiden wat aan hebben. Als je naar iemand toegaat en zegt ‘ik heb die techniek van je nodig’ of ‘deze techniek moet een patiënt in’, dat werkt niet. Het kost tijd om te begrijpen wat er aan de andere kant gebeurt en wat de problemen zijn. Je moet ook een gezamenlijke taal vinden. Bij mij is bijvoorbeeld alles recht. De componenten, mijn schema’s. In de biologie is alles krom, bijvoorbeeld cellen, weefsels en organen. Je moet een manier vinden om daarmee om te gaan. In de gedeelde fascinatie voor het probleem vinden we elkaar.”

Door welke andere onderzoeker ben je verrast?

“Door meerdere onderzoekers, maar Chris de Zeeuw van het Erasmus MC verrast mij steeds weer. Het is een belangrijke reden dat ik voor zijn afdeling heb gekozen voor mijn tweede aanstelling als hoogleraar. Hij is een inspirerend leider. Heel goed in zijn wetenschappelijke kennis en hij weet hoe je een groep kan creëren en kansen biedt. Hij ziet het belang van andere disciplines voor zijn eigen discipline en was misschien wel generatie nul van Medical Delta.”

Dit artikel maakt deel uit van een serie waarin we de negen nieuwe Medical Delta hoogleraren uitlichten. Klik hier voor de andere portretten die tot nu toe zijn gepubliceerd. Het onderzoek van Wouter Serdijn draagt onder andere bij aan de wetenschappelijke programma’s Medical NeuroDelta: Ambulant Neuromonitoring for Prevention and Treatment of Brain Disease en Medical Delta Cardiac Arrhythmia Lab.

Hoe kunnen we de verbinding tussen hersenen en spieren herstellen?

Voor mensen met hart-, zenuw- en breinaandoeningen kunnen bio-elektronische medicijnen een belangrijk verschil maken. Wouter Serdijn werkt aan deze piepkleine apparaatjes. Hij is hoogleraar aan de TU Delft en dankzij Medical Delta nu ook aan het Erasmus MC.

“Een voorbeeld waar we aan werken, is mensen met een verlamming helpen bij het terugkrijgen van hun houding bij zitten, staan of een rudimentaire vorm van lopen. Dat kan nu vooral met een rolstoel of andere hulpmiddelen. Maar ik wil weten hoe we de eigen spieren, die nog wel intact zijn maar niet meer worden aangestuurd, weer kunnen aanzetten.”

Lees hier meer over het werk van Wouter: https://lnkd.in/dudR9SZA

[youtube]https://youtu.be/6SnjVyWWOxo[/youtube]

TU Delft | Health Initiative #Healthtech #Health #Medtech #Healthinnovation

Master in Biomedical Devices at Delft University of Technology

Are you in the final year of your BSc EE studies and interested in electronic medical devices? Then you may wish to consider continuing your studies in the MSc EE profile Biomedical Devices at Technische Universiteit Delft. Biomedical devices are devices for medical diagnosis, monitoring, and treatment. They can be fixed, portable, wearable, implantable, and injectable. They are active and thus embed #electronics, computing, and software. Examples are: Magnetic Resonance Imaging (#MRI), Computed Tomography (CT), Positron Emission Tomography (#PET), #Ultrasound (US) imaging; Monitors for pulse oximetry, blood pressure, glucose, electrocardiography (#ECG), electro-encephalography (#EEG), electro-myography (EMG), electro-corticography (#ECoG), temperature, galvanic skin response, bio-impedance; Smart watches, smart patches, smart textiles, smart catheters, smart implants; Cardiac assist devices, cardiac pacemakers, implantable cardiac defibrillators (ICD); Devices for transcranial magnetic stimulation (TMS), transcutaneous electrical nerve stimulation (TENS), focussed ultrasound stimulation (FUS); Neurostimulators, brain-machine interfaces, organs-on-chip devices, #bioelectronicmedicine, #electroceuticals. The Biomedical Devices profile has three focus areas = sub-profiles: 1. Biosensors, BioMEMS and Microsystem Integration (BioSemi), part of the EE track Microelectronics; 2. Biomedical Circuits and Systems (BioCAS), part of the EE track Microelectronics; 3. Biomedical Signal Processing (BioSP), part of the EE track Signals and SystemsFor registration, see: https://www.tudelft.nl/onderwijs/opleidingen/masters/ee/msc-electrical-engineering/biomedical-devices-bd-profile We look forward to welcoming you to Delft!

Chips, vaccines and conspiracy theories

SCIENCE 11 juni 2021 – 09:15 door Tomas van Dijk @tomasvd
The researchers did not anticipate the fuss their publication would cause on social media. (Photo: Lindsay Mackenzie/WHO)
Conspiracy theories about chips injected with vaccines are incited by a photo of a microchip made by US scholars and Tiago Costa of TU Delft. “We didn’t see the fuss coming.” No we are not involved in a conspiracy to chip the world‘s population while injecting vaccines. Really? No, we’re not. You would expect a query like this in a satirical magazine. Yet the Director of Strategic Communications and Media Relations at Columbia University had to answer question like this by Reuters. “This research has nothing to do with Covid-19 and vaccinations,” she told the news organisation. She was asked by Reuters to debunk the rumour that her university was in any way complicit in such a conspiracy. What prompted all this? A photo of a microchip designed by Columbia University engineers that is doing the rounds among vaccine sceptics. Posts show a picture of the microchip inside the tip of a needle, with captions and comments suggesting a connection with the Covid-19 vaccine. Chipping people would be Bill Gates’ wet dream, many people believe. The comments include: “I heard if a person had the Moderna vaccine, a strong magnet would stick to the arm where the injection was given” and “I’m not taking no bullshit Covid-19 vaccine”.
Is it a hoax? No, not that either. The photo is from a 7 May publication in Science Advances entitled ‘Application of a sub–0.1 mm3 implantable mote for in vivo real-time wireless temperature sensing’. One of the authors is Tiago Costa of the Microelectronics Department (Faculty EEMCS), who until recently worked at Columbia University and is now continuing his research on wireless, miniaturised implantable medical devices at TU Delft. “We have created a microchip that can be inserted with a needle,” says Costa. “It is the world’s smallest single-chip system, with a volume of less than 0.1 mm3. It uses ultrasound to measure vital signs. Or at least that is the idea. Currently it only measures temperature. But we are working on more diagnostic and therapeutic medical procedures.” The device has been successfully tested on mice. To date, conventional implanted electronics have been highly volume-inefficient – they generally require multiple chips, packaging, wires, and external transducers, and batteries are often needed for energy storage. A constant trend in electronics has been the tighter integration of electronic components, often moving more and more functions onto the integrated circuit itself. As big as a grain of salt The researchers pushed the limits on how small a functioning chip could be made. Measuring just 0.1 mm3, the chip can barely be seen with the naked eye. It is as big as a grain of salt. The research started several years ago, long before conspiracy theories about chips and vaccines were around. “That the publication came out now, during the height of the vaccination campaigns, is an unfortunate coincidence,” says Costa. He says that neither he nor his colleagues saw the fuss coming. “We were so enthusiastic about our findings, we didn‘t give a moment’s thought to how the study would be seen. I guess you can call us naïve,” he says laughing. But what more grounds are there to debunk the conspiracy theory, aside from the simple fact that it is not clear what motive the researchers would have to make everyone walk on the leash of Bill Gates? For starters, most of the needles used for Covid-19 vaccinations are the relatively thin so-called 25 Gauge needles and the chips don’t fit through these needles. To be injected they need syringes that are a notch bigger.
‘Bioelectronic medicine is booming’
Addressing concerns about the chip being used wirelessly in the future with 5G, Ken Shepard,  Professor of Electrical and Biomedical Engineering at Columbia and a researcher on the project, told Reuters that the device does not use electromagnetics. ‘It uses ultrasound, meaning that you have to be interacting with an ultrasound imaging device for the chip to be powered or communicate.’ Delta Tomas van Dijk @tomasvd Redacteur For questions/comments, email me at: tomas.vandijk@tudelft.nl Read more about: #MEDICINE #CORONAVIRUS #MEDICAL-ENGINEERING

The rising stars of the TU Delft, featuring …

Dante Muratore

After his PhD in what he calls “hardcore analogue microelectronics”, rising star Dante Muratore knew he wanted to continue his career working on systems that are closer to an actual application. A postdoc position at Stanford University, in which he worked on the electronics for an artificial retina to treat medical conditions leading to the loss of vision, brought him just that. Then, wanting to come back to Europe and to continue doing bioelectronics at the highest level possible, an opening at TU Delft crossed his path. ‘It was the easiest choice I ever made,’ he says.

Brain-machine interfaces

As assistant professor within the Bioelectronics group, the central theme of Muratore’s research is to build brain-machine interfaces. In the first few years of his tenure, he will continue development of the artificial retina and also work on applications related to the motor cortex – ultimately allowing treatment of, for example, paralysis and locked-in syndrome. ‘Our aim is to interface with individual cells of the nervous system, also taking into account each neuron’s cell type,’ he says. ‘For the retina, it is mostly about stimulating these neurons so they will send the correct signal to the brain. For the motor cortex, we record the information coming from the brain, which indicates the intention of movement. We then want to use that information to control an external device, such as a mouse cursor or a robotic arm. We are also considering implementing feedback to the motor cortex as this may provide the user with a sense of body position.’

We aim for our brain-machine interfaces to interact with individual cells of the nervous system, also taking into account each neuron’s cell type.

― Dante Muratore

A staggering amount of data

As they will be implanted, these brain-machine interfaces need to be small – the artificial retina device has the size of a pea. Yet, they need to manage massive amounts of data, comparable to streaming a hundred HD Netflix movies at once. Muratore closely collaborates with neuroscientists. ‘Basically, I need them to tell me how bad a job I can do at managing these data for the device to still operate as intended, so I can reduce overall power consumption.’ He also interacts with the people specialised in signal processing to determine, for example, if data compression should be integrated close to the (neural) sensor or if it is better to take it off-chip. ‘The biggest challenge, however, is not a scientific one,’ he says. ‘Each sub-problem requires a completely different academic specialty to design a solution – typically an incredibly complicated one. At the end of the day, you need to put these together to work as a single machine. This is a very challenging engineering problem.’

An implantable brain-machine interface has to be very small, yet able to handle massive amounts of data.

― Dante Muratore

Happy in the Medical Delta

Muratore is very happy with the Medical Delta and the ongoing convergence with Erasmus University and Medical Centre. ‘A brain-machine interface really is not a one-man job,’ he says. ‘You want these medical and technical disciplines to mingle, to have lunch together over which to share the problems we run into. We need to truly understand each other and speak the same language.’ Having arrived pretty much with the country in lockdown, he hasn’t yet been able to build strong multi-disciplinary collaborations. But next month, he is expecting to hear about the Marie Curie grant proposal he submitted. ‘My group leader, Wouter Serdijn, has also involved me in the writing of a couple of large NWO grants. Bringing young people on board is one of the things that is great about TU Delft.’

A REVOLUTION FOR NEURAL IMPLANTS: WIRELESS CHARGING AND NERVE STIMULATION

Posted in Medical Engineering. Published on20/05/2021. Authors: Dr. Vasiliki Giagka and Andrada Iulia Velea

Dr. Vasiliki Giagka
Fraunhofer IZM
Phone +49 30 46403-700
Social media page
Contact us
Andrada Iulia Velea
Fraunhofer IZM
Phone +49 30 46403-709

Contact us

The Moore4Medical project brings together no fewer than 66 companies, universities, and research institutes from more than ten countries. Their aim is to develop open technology platforms that offer revolutionary new opportunities for the medical sector and its patients. Fraunhofer IZM is one of the partners focusing especially on implantable devices. RealIZM met Andrada Velea and Vasiliki Giagka to speak about the status quo, challenges, and the details of the technology.

RealIZM: Can you start us off with a quick overview of the Moore4Medical project?

Vasiliki Giagka:  My team and I are working on a new generation of implantable devices. One of our main goals is to power implants via ultrasound. Implanted devices need to be powered wirelessly, as we cannot have big batteries or long wires inside the human body. Currently, these implants are powered through batteries, which are typically large and need periodic replacement. What we would like is to either remove them completely or be able to recharge smaller ones periodically, which means that we need a way to transfer power wirelesslly to these implants. 

RealIZM: How did batteries work until now?

Vasso Giagka: The batteries remain inside the body until their energy is so low that they need to be replaced. This involves surgery, and that is exactly what we want to prevent with rechargeable batteries. Efficient energy storage is one of the biggest technological challenges in medical technology, and it seriously is holding back innovation in the field.

RealIZM: How do you plan to charge the batteries without wires?

Vasiliki Giagka: We want to transfer power wirelessly to very small implants that are placed deeper inside the body, which is why we are looking at ultrasound transducers integrated into these micro-implants themselves. These transducers act as receivers that can absorb the energy contained in the acoustic waves transmitted from the outside. In other words, in order to transfer power in this way, we need two transducers (which could also come in the form of arrays). You need one on the outside that, let’s say, vibrates and sends pressure waves through the tissue. And you need one inside the body, at the implant site, that starts vibrating once these pressure waves reach it. These mechanical vibrations or pressure waves are converted into electricity that is used to power the implant.

RealIZM: How far have you come with your research?

Vasiliki Giagka: Right now, we are looking at different types of transducers that could be used for such applications. This had been tried using piezoelectric transducers. However, the problem with these transducers is that they contain materials that are not compatible with the human body. In our project, we are using new technologies and different types of microfabricated transducers that contain biocompatible materials. Moreover, we are focusing on developing these transducers in the form of arrays for a more efficient transfer of energy.

RealIZM: Are there any other goals you are pursuing in the project?

Vasiliki Giagka: Apart from wireless power for small implants, we are also exploring ways to stimulate tissue. Traditionally, this is done by electrical means but, in this project, we are using ultrasound for neuromodulation. There are billions of neural cells inside the human body and, ideally, we would like to have a means to interact with each of them. Ultrasound could potentially give us this capability, because by combining different acoustic waves, we can create very small focal points to target specific locations inside the body.

Andrada Velea: In the project, we are also focusing more on the peripheral nervous system. The nerve diameters we are targeting are in the range of a few mm, which means that, first, these implants have to be extremely small and, second, the focal points have to be in the range of µm to effectively target the individual neurons or fibers making up the nerves. This way of neurostimulation gives us the power to be very specific when delivering the therapy and, what is even more important, without affecting the whole body, as is usually the case with drug-based treatments.

RealIZM: Are there any other advantages to this?

Andrada Velea: Many treatments come with high costs and severe side effects, or have to use poorly adapted medicines. Nerve stimulation can be used to treat diseases such as rheumatoid arthritis, chronic headaches, asthma, or Parkinson’s disease.

Vasso Giagka: At the same time, the ultrasound waves can also serve as a communication channel between implants and external diagnostics: In this way, the recorded data can be sent directly to the outside world for further evaluation. This allows us to monitor how the therapy is going and see whether it has to be adjusted. This is what we call ‘personalized medicine’.

RealIZM: This sounds like a software solution at some point, right?

Vasiliki Giagka: It could be handled by software or by the physician analyzing the data received from the implant. What we are dreaming of is an automated system that understands on its own what needs to be adjusted – but that is decades from now. To start with, we will get a means to collect the information, and then more competent people will work with it and decide the next steps.

RealIZM: What challenges are you currently facing?

Andrada Velea: The implants consist of so many different components: transducers, electrodes, passive components. They all need to be miniaturized down to µm scales. And maybe even more importantly than this, there are the materials we use. They need to be not only biocompatible, but compatible with the acoustic domain for an efficient transfer of energy between implants and tissue. We are still looking for the right material.

Vasso Giagka: Data security is another important point, too. As we are talking about implants inside the human body, we need to make sure that nobody is able to hack the information. This is not our task, but other people are working on that, because that will be a central issue.

RealIZM: How exactly is the project related to Moore’s Law?

Vasiliki GiagkaAccording to Moore’s Law, the performance of chips should double every two years. This is particularly noticeable in consumer electronics, but not in medical technology. This is due to the fact that the question of energy storage has not yet been solved. If batteries are rechargeable, both batteries and implants can be made smaller. Usually, the size of individual components and resolution that we can achieve improves year after year. This works to our advantage, because we are using microfabricated devices in the project. However, the question of energy storage still remains unresolved. Solutions have to be found, and this is one of the main goals of Moore4Medical.

RealIZM: Is energy storage the only reason for the slower pace of innovation?

Vasso Giagka: Medical technology is a very conservative field, because safety is paramount in it. Consumer electronics are less regulated, because the products usually do not affect anyone’s life. Medical devices have to go through many stages with regulatory aspects and get approval at every turn. That is why medical devices have not changed much over the last years.

RealIZM: How could we imagine the final product of Moore4Medical to look like?

Vasso Giagka: That is not easy to say. We have to develop prototypes that are safe, secure, and effective. There is a lot of back and forth with those devices, as you cannot say ‘Here is my idea, I want to patent it and put it on the market’. Our final product will be what we call a platform. You can imagine it like a toolbox with different building blocks. We develop some components that you can use, and you could also build more components on top of them for specific applications.

DE PROFCAST Episode No. 10: WOUTER SERDIJN

met Dave Boomkens en Marieke Kootte

Wouter Serdijn is een echte Delftse jongen. Zijn hele wetenschappelijke carrière speelde zich namelijk af in Delft: van zijn masterdiploma tot zijn benoeming als hoogleraar. Daarnaast is Wouter een van de weinige ingenieurs met een aangeboren interesse in medische technologie. Vanuit die hoedanigheid werkt hij onder andere aan pacemakers, gehoorimplantaten en neurostimulators. Ook werkt Wouter mee aan baanbrekend onderzoek op het gebied van hartritmestoornissen. Een bijzonder gesprek over kwetsbaar durven zijn, het verbeteren van mensenlevens én Radiohead.

Waar blijft consumenten­elektronica voor de thuiszorg?

Toepassingen in de thuiszorg zijn vaak afhankelijk van medische sensoren. Door goedkopere consumentensensoren te gebruiken, kan de thuiszorg betaalbaarder worden.

Medisch elektronicaspecialist professor Wouter Serdijn (faculteit Elektrotechniek, Wiskunde en Informatica) signaleert een gebrek aan innovatie op het gebied van medische sensoren die er in zijn ogen “een beetje primitief” uitzien en voor “kunstmatig hoge prijzen” worden verkocht. Wie breekt de markt van medische sensoren voor de thuiszorgmarkt open?

In de virtuele Medical Delta bijeenkomst van vorige week deelde longarts Ries van den Biggelaar (Erasmus MC) zijn ervaringen met het gebruiken van beademingsapparatuur voor patiënten thuis. Hij noemde ALS-patiënten en patiënten met thoraxvergroeiing als voorbeeld. Wanneer ze in het stadium komen dat ze niet voldoende kunnen ademen, komen ze meestal op de intensive care terecht. Als hun beademingsapparatuur dan na ongeveer een week goed uitgebalanceerd is, kunnen ze onder toezicht van een online monitoringssysteem weer naar huis.

Dat bewakingssysteem werkt met een sensor die op de oorlel wordt geklemd en die het zuurstof- en kooldioxidegehalte in het bloed meet, evenals de hartslag. Maar de sensor valt er gemakkelijk af, hij wordt onaangenaam warm, hij moet met een gel worden aangebracht. Kortom: hij is ontworpen voor gebruik in een ziekenhuis, in de handen van medische professionals, en niet voor continue monitoring in een thuissituatie.

Hoewel thuisbeademing een optie is voor een groeiend aantal patiënten, legt Van den Biggelaar uit, staat de huidige vorm van de sensoren een grotere uitrol niet toe.

Serdijn vindt dat fabrikanten van medische apparatuur het voorbeeld moeten volgen van consumentenelektronica en slimme horloges, die overigens ook de hartslag en de zuurstofverzadiging meten. Voor een fractie van de kosten.

Professor Douwe Atsma (cardiologie in het Leids Universitair Medisch Centrum) steunt de oproep van Serdijn. Eén van de redenen dat medische technologie zo duur en niet gebruiksvriendelijk is, zei hij, is dat de apparatuur moet voldoen aan de hoge normen van nauwkeurigheid en reproduceerbaarheid. Maar de thuiszorg heeft daar helemaal geen behoefte aan, zegt Atsma terwijl hij een wegwerp-zuurstofsensor laat zien. De nauwkeurigheid van dergelijke sensoren mag minder zijn dan in het ziekenhuis, zolang het globale beeld maar duidelijk is.” Kachelt het gewoon door, bedoelt Atsma, of is er een plotselinge verandering? “In geval van twijfel kunnen we patiënten altijd bellen en vragen hoe ze zich voelen. Serdijn merkte daarnaast op dat consumentenelektronica over het algemeen tamelijk betrouwbaar is. “Uw auto zit er vol mee.”