Will the Terminator come to life?

Humankind in 2050

Elon Musk recently launched his Neuralink company. What Musk aims to achieve is actually a good indication of what tomorrow’s technology could look like. He wants to make direct contact with our brains in order to connect people with each other. The exchange of information without any speech or typing. That technology, in which electronics are applied within our brains, is now being developed. 

Will humans become cyborgs by 2050? If they do, is that such a bad thing? Wouter Serdijn, Professor in Bio-Electronics at TU Delft, is thinking out loud.

Wouter Serdijn

What is going to happen actually makes logical sense from an evolutionary perspective. There will be further integration of humans and technology. Basically, people are large electrochemical machines. The slow process of information exchange within our bodies takes place by means of hormones and rapid exchange of information is achieved through electricity and neurotransmitters. It is possible to use electronics to influence the interaction between the two.
It is now already standard practice for people born deaf to be given a cochlear implant. By 2050, blind people will be fitted with retinal implants as a rule. It will look much better than it does today. Currently, it is still a type of camera and you can clearly tell that someone is disabled, but by then it will be fully integrated into the eyeball.
By 2050, we will have an even better understanding of how the human brain works. This will enable us to engage in improved interaction with the brain in order to offer even better treatments. Actually, the way we currently suppress medical disorders is quite cruel. This is why I hope to see a fully-fledged alternative for the chemical medicines that come with an arsenal of nasty side-effects. That is why we are, for example, working on injectable electronic medicines. That has to be the way forward.

My primary focus is on improving quality of life for people who are slightly disadvantaged from a medical perspective. The idea of using technology to improve ourselves, or even make ourselves bigger, is quite attractive. Even if there is no real medical need for it, as Elon Musk and others envisage. We will probably become integrated with the internet. What will the value of an individual person then be? Will privacy still exist in the collective? These are issues that we must monitor carefully.

We need to watch out for horror-film scenarios, without becoming technophobes. Yes, it is possible to influence all sensory, motor and empathic processes electrically. It is already possible to achieve it chemically and people seem to have few issues with that. Fifty years ago, people were still afraid of a television that could rewind. Yet we are now embracing interactive TV. We are going fast forward into the future. By 2050, I hope that we all live much more pleasant lives and grow old with integrated electronics. Then, looking back, you will no longer wish to return to 2017. 

Text: Marieke Roggeveen
Photo: Marieke Roggeveen

Komt de Terminator tot leven?

De mens in 2050

Elon Musk lanceerde onlangs zijn bedrijf Neuralink. En wat Musk wil is een goede indicatie van de technologie van de toekomst. Hij wil direct contact maken met onze hersenen en daarmee mensen met elkaar verbinden. Informatie-uitwisseling zonder spraak of typen. Die technologie, waarbij elektronica in onze hersenen wordt geïmplementeerd, is nu in de maak. 

Is de mens een cyborg in, zeg, 2050? En is dat erg? Wouter Serdijn, Professor in Bio-Elektronica aan de TU Delft, vraagt het zich hardop af.

Wouter Serdijn

Wat er gaat gebeuren is eigenlijk evolutionair best logisch. Er gaat een verdere integratie van mens en technologie plaatsvinden. De mens is een grote elektrochemische machine. De langzame informatie-uitwisseling in ons lichaam vindt plaats door middel van hormonen; de snelle informatie-uitwisseling door middel van elektriciteit en neurotransmitters. Je kunt de interactie tussen die laatste twee beïnvloeden met elektronica.
Zo is het nu al standaard dat mensen die doof geboren worden een cochleair  implantaat krijgen. In 2050 krijgen mensen die blind zijn standaard een retinaal implantaat op hun netvlies. Dat zal er veel beter uit zien dan vandaag. Het is nu nog een soort van camera, je ziet duidelijk dat iemand gehandicapt is, maar tegen die tijd zit het volledig in de oogbol.
We zullen in 2050 nog beter begrijpen hoe onze hersenen werken. En daardoor dus beter de interactie aan kunnen gaan met onze hersenen om betere behandelingen te kunnen bieden. Eigenlijk worden medische defecten nu op een zeer brute manier onderdrukt. Ik hoop daarom op een volwaardiger alternatief voor chemische geneesmiddelen, die hebben echt een batterij aan bijwerkingen. We werken daarom bijvoorbeeld aan injecteerbare elektronische medicijnen. Die kant moet het opgaan.

Ik richt me vooral op het verbeteren van de kwaliteit van leven bij mensen die medisch wat minder fortuinlijk zijn. Het zal zeker ook aantrekkelijk worden om onszelf via technologie te verbeteren. Of vergroten. Ook wanneer er geen medische noodzaak voor is, zoals Elon Musk en anderen dat willen Waarschijnlijk worden we dan geïntegreerd met het Internet. Wat is dan nog de waarde van de individuele mens? Bestaat er dan nog privacy in het collectief? Dat moeten we goed in de gaten gaan houden.

We moeten waakzaam zijn voor filmscenario’s, maar vooral geen technofoben worden.  Ja, je kunt alle sensorische, motorische en empatische processen elektrisch beïnvloeden. Dat kan nu ook al, chemisch, en daar lijken mensen minder problemen mee te hebben. In de jaren 50 nog was men bang voor een televisie die kon terugkijken. Nu omarmen we onze interactieve tv. We gaan fast forward naar de toekomst. In 2050 hoop ik dat we allemaal op een veel prettigere manier leven en oud worden met geïntegreerde elektronica. Dan wil je echt niet meer terug naar 2017.

Tekst: Marieke Roggeveen
Foto: Marieke Roggeveen

TU Delft en Inholland ontwikkelen chip voor beter gehoor

13 juli 2017

http://nieuws.inholland.nl/tu-delft-en-inholland-ontwikkelen-chip-voor-beter-gehoor/

Een chip die ervoor zorgt dat doven en slechthorenden beter horen met hun gehoorimplantaat, waardoor hun kwaliteit van leven toeneemt. Dat is het ambitieuze streven van project ReaSONS II Demo van de TU Delft en Inholland. Onlangs kreeg het project subsidie van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). Docent-onderzoekers en studenten van verschillende onderwijsdomeinen zullen gezamenlijk aan dit project werken.

Onderzoekers van de TU Delft ontwikkelden een chip die de zenuwactiviteit in het oor nauwkeurig kan meten. In combinatie met een cochleair implantaat kan hij slechthorende en dove mensen veel beter laten horen. De chip is echter nog incompleet. Daarom heeft de TU Delft in samenwerking met Inholland financiering aangevraagd om de ontwikkeling ervan voort te zetten onder de naam ReaSONS II Demo. Het uiteindelijke doel is om bedrijven een prototype aan te bieden dat ze kunnen toepassen in hoorproducten. De NWO kende de Demonstrator-subsidie vorige maand toe.

De ReaSONS chip

Dit project heeft impact op de kwaliteit van leven van mensen die een gehoorimplantaat gebruiken. We werken op het snijvlak van techniek en gezondheidszorg.

Cees Jeroen Bes, onderzoeker bij de TU Delft, ontwikkelaar van de ReaSONS-chip

Samenwerking tussen domeinen
Inholland voert dit project uit met behulp van docent-onderzoekers en studenten van de onderwijsdomeinen Techniek, Ontwerpen en Informatica (TOI) en Gezondheid, Sport en Welzijn (GSW). Het onderzoek wordt uitgevoerd door het kernteam Biomedical van het Domein TOI in samenwerking met het Inholland Health and Technology Centre (IHTC). De opgedane kennis wordt ingezet binnen de curricula van de betrokken opleidingen als voorbeelden tijdens de instructiecolleges, als projectopdracht en afstudeeropdracht. Met dit project denkt Inholland op wereldniveau mee over innovatieve oplossingen op het gebied van gezondheid.

Technisch hoogstandje
Cees Jeroen Bes, docent-onderzoeker en projectleider van het kernteam Biomedical, kent als geen ander de gebruikte technologie. Hij bedacht en implementeerde het concept achter de chip en promoveert er binnenkort op aan de TU Delft. “Nu is het tijd om de chip door te ontwikkelen van een proof-of-concept naar prototype en er een showcase van te maken”, zegt Bes. “Het project is niet alleen een technisch hoogstandje, het heeft ook nog eens impact op de kwaliteit van leven van mensen die een gehoorimplantaat gebruiken. We werken daarbij op het snijvlak van techniek en gezondheidszorg.”

Het project ReaSONS II Demo kent een gebruikerscommissie waarin de bedrijven Healthtech, Advanced Bionics, Twente Medical Systems, Applied Biomedical Systems en mede-patenthouder Leids Universitair Medisch Centrum plaatsnemen. Demonstrator is een financieringsinstrument van het NWO-domein Toegepaste en Technisch Wetenschappen dat daarmee kansrijk technisch onderzoek stimuleert en faciliteert om tot een zogeheten minimaal werkbaar product te komen.

Neem bij vragen over de ReaSONS II Demo contact op met onderzoeker Cees Jeroen Bes via ceesjeroen.bes@inholland.nl.

De Gezonde Samenleving

Met dit project dragen docent-onderzoekers en studenten bij aan De Gezonde Samenleving, een profilerend thema van Hogeschool Inholland. Dit is een samenleving waarin burgers, bij fysieke, psychische en sociale problemen, een zo gezond en sociaal mogelijk leven leiden en kunnen participeren. Een samenleving waarin mensen in hun sociale omgeving centraal staan. Waarin professionals mensen – preventief en bij problemen – activeren en ondersteunen bij het ontwikkelen van zelfmanagement en empowerment. Deze professionals werken interprofessioneel en maken gebruik van de laatste (technologische) innovaties.

Analog Processing of Electrophysiological Signals (lecture)

Today, I gave a lecture for the lecture series Themes in Biomedical Electronics (ET4127) on analog processing of electrophysiological signals. The lecture has been recorded by Collegerama and can be viewed here: https://collegerama.tudelft.nl/Mediasite/Play/ac76aa3b68a6404dbd92a5e862020eaf1d?catalog=528e5b24-a2fc-4def-870e-65bd84b28a8c&playFrom=12188&autoStart=true.

Enjoy!

Wouter

Acting on the potential of action potentials: will bioelectronic medicines be the next biologics?

Article in The Pharmaceutical Journal9 DEC 2016, By Emma Dorey

Bioelectronic medicine is a new approach to treating major chronic diseases that could give doctors and patients alternatives to costly mainstream medicine and may become as commonly prescribed as chemical or biological drugs. Some researchers and pharmaceutical companies are already taking this potential new class of treatments seriously and, as promising results emerge, others are expected to follow.

Imagine a prescription from your doctor, not for tablets but for a tiny electrical device implanted on a nerve in your neck. The device will monitor and treat your condition — whether it is diabetes, asthma, hypertension or even cancer — by modulating electrical impulses.

Pharmaceutical drugs can be highly effective, but don’t work for everyone. They tend to work systemically, often causing a variety of adverse effects, and rely on patient adherence. As a result, there are still countless chronic diseases that remain untreated or poorly treated by mainstream medicine. Enter bioelectronic medicines, a new group of therapies that work by transmitting electrical impulses along nerve fibres, rather than through molecular mechanisms. Tapping into the electrical wiring of the body, bioelectronic medicines — also called electroceuticals — could transform pharmaceutical treatment of many chronic diseases, providing an alternative or adjunct to traditional chemical or biological drugs. With technical advances and burgeoning research activity, this revolutionary approach to treating disease is starting to become a reality.

“Drugs are based on exercising the chemical component of our nervous systems and tend to act very globally. Electroceuticals act locally,” explains Wouter Serdijn, a bioelectronics researcher at Delft University of Technology in the Netherlands and University College London. “Moreover, contrary to drugs, electroceuticals have an instantaneous effect and their effect is reversible. It takes quite some time for drugs to [exert] their beneficial effect and, as a consequence, it takes quite some time to be able to administer the right dose.”

Wouter Serdijn, a bioelectronics researcher at Delft University of Technology in the Netherlands and University College London

Source: Courtesy of Wouter Serdijn

It’s a tall order. “The problem with nerves is that they usually are grouped in bundles and they carry information to and from the brain, from and to the organ; often to more than one organ or to more than one part of an organ,” explains Serdijn. “So stimulation and recording nerves becomes a delicate and highly selective task.”

Serdijn agrees: “I think pharma perceives electroceuticals as a game changer.”

Energy-Efficient Low-Power Circuits for Wireless Energy and Data Transfer in IoT Sensor Nodes

[1704.08910] Energy-Efficient Low-Power Circuits for Wireless Energy and Data Transfer in IoT Sensor Nodes, paper by G. C. Martins, A. Urso, A. Mansano, Y. Liu, W. A. Serdijn

Abstract: In this paper, we present techniques and examples to reduce power consumption and increase energy efficiency of autonomous wireless sensor nodes for the Internet of Things. We focus on RF energy harvesting and data transfer, all of which have a large impact on the device cost, lifetime and functionality. We explore the co-design of antenna and electronics to increase RF-DC conversion and efficiency and to improve the performance of the LNA. A high-efficiency orthogonally switching charge pump rectifier is presented. Its measurement results are presented, along with a discussion on how to define its power conversion efficiency. To boost the rectifier output voltage, while presenting the best output load to it, a DC-DC converter with maximum power point tracking is presented. To transmit slowly-varying signals in a low-power manner, an asynchronous data converter is discussed and two modalities of data transmission are presented. The first one is a passive transmitter implementation and the second a novel low-power sub-GHz UWB transmitter.

Comments: 15 pages, 32 figures, 4 tables
Subjects: Emerging Technologies (cs.ET)
Cite as: arXiv:1704.08910 [cs.ET]
(or arXiv:1704.08910v1 [cs.ET] for this version)

Feit of fictie: kunnen we microchips in onze hersenen implanteren om onze gedachten te downloaden en te uploaden, zoals Elon Musk wil met zijn nieuwe bedrijf “Neurolink”?

Is het mogelijk om microchips te implanteren en daarmee beter onze bedoelingen en wensen over te brengen op een digitale “artificial intelligence layer”, geimplanteerd op onze hersenschors? Fact-check nieuws-item op NPO Radio 1 in de rubriek “Feit of Fictie?”, d. 30 maart 2017. Met bijdragen van Elon Musk, Bas Bloem en Wouter Serdijn.

Het item begint na 54 minuten.

Hoe kun je een dove laten horen en een blinde laten zien?

De Universiteit van Nederland

met
prof. dr. ir. Wouter Serdijn

Doven weer laten horen en blinden weer laten zien: het lijkt misschien een godswonder, maar in principe heb je genoeg aan een superslimme chip. Hoe dat precies werkt weet elektronicus Wouter Serdijn (TU Delft) als geen ander. Laat je rondleiden in een wereld die zich op de vierkante millimeter afspeelt en ervaar zelf hoe het klinkt om met een chip te horen.

prof. dr. ir. Wouter Serdijn

Je lijf aansturen met behulp van bio-elektronica, dat is de tak van sport van prof. dr. Wouter Serdijn (TU Delft). Met behulp van implanteerbare chips in je lijf kun je je brein een handje helpen om losse elektronische eindjes weer goed aan elkaar te knopen. Het gevolg? Patiënten beter laten zien, horen of minder laten trillen (bij bijvoorbeeld Parkinsonpatienten).

Technische Universiteit Delft

De TU Delft inspireert je. Daagt je uit om kritisch te denken. Om creatief te zijn. Of je fascinatie voor techniek om te zetten in frisse ideeën. In elk vak, in elk project. Studeren aan de TU Delft betekent samen met anderen actief werken aan de nieuwste technologische oplossingen.

U.S. Government Awards $20 Million for Electroceuticals Research

nerves

Image: Pradeep Rajendran and Rosemary Challis/Shivkumar Lab/UCLA

The U.S. National Institutes of Health (NIH) wants better ways to treat disease with electrical stimulation, and last week announced the recipients of more than US $20 million in funding for the field. The awards aim to improve maps of the peripheral nervous system—the body’s electrical wiring—and generate sophisticated systems that can hack into its codes.

The funding is part of a $248 million, seven-year program that the NIH Common Fund announced in 2014. Last week’s awards mark the start of the core of that program. Up to $39 million in additional awards will be announced next year. The agency will begin accepting applications for those awards by early 2017, says NIH’s Gene Civillico, who heads up the funding program, called SPARC, or Stimulating Peripheral Activity to Relieve Conditions.

Researchers have for decades been electrically stimulating the brain, the spinal cord and peripheral nerves in an attempt to alleviate ailments such as Parkinson’s disease, epilepsy, pain, and paralysis. The technique can work as well or better than drugs, leading some to dub the field “electroceuticals.” Several companies sell such devices with approval from the U.S. Food and Drug Administration (FDA).

Those tools have seen some success. In clinical studies they have been shown to reduce seizures and symptoms of rheumatoid arthritis, and help people regain bladder control and muscle mobility.

The tools on the market are surprisingly simplistic. In most systems, a pulse generator blindly sends electrical impulses along a lead to electrodes that are placed on a nerve. With enough intensity, the stimulation causes neurons to fire. Those induced impulses, called action potentials, are just like the ones produced naturally by the body. The signals travel along neural networks in different temporal patterns, communicating with the body and influencing chemical and biological processes.

The problem with current devices is that they shoot electrical impulses broadly at nerves in patterns that don’t begin to mimic the body’s natural code. It’s miraculous that the body responds at all to these crude signal patterns. And often the devices activate entire nerves, rather a subset of particular fiber groups, wasting battery power and creating side effects.

That leaves a lot of room for improvement—an exciting prospect for engineers. Many more diseases could be treated with electrical stimulation if the devices were designed more elegantly, say leaders in the field. New designs for electrodes and other tools must better interface with the body and activate nerves that are currently out of reach. And such tools must selectively activate key fibers within the nerve that perform specific functions, these leaders say.

To do that, we need a better understanding of the anatomy of neural circuits—where they are and what they do. We also need to know the precise signal patterns neural circuits use to communicate with organs. In other words, if we want to hack the system, we need maps and codes.

Those are the kinds of breakthroughs NIH Common Fund intends to stimulate with the awards. “We’re seeing a fair bit of clinical success, but with fairly primitive understanding of what the stimulation is actually doing,” says Civillico.

The awards focus on treating conditions such as heart disease, asthma and gastrointestinal disorders. The program’s leaders want researchers to focus on peripheral nerves—those that connect the brain and spinal cord with the rest of the body—because of their potential direct effects on organ systems and their accessibility. (The brain is far more complex, and harder to map.)

Vacancy: Assistant/Associate Professor of Bioelectronics

Department/faculty: Electrical Engineering, Mathematics and Computer Science
Level: PhD degree
Working hours: 38 hours per week
Contract: Tenure track with possibilities for advancement
Salary: €3400 to €6299 per month gross

 

Electrical Engineering, Mathematics and Computer Science

The Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) is known worldwide for its high academic quality and the social relevance of its research programmes. The faculty’s excellent facilities accentuate its international position in teaching and research. Within this interdisciplinary and international setting the faculty employs more than 1100 employees, including about 400 graduate students and about 2100 students. Together they work on a broad range of technical innovations in the fields of sustainable energy, telecommunications, microelectronics, embedded systems, computer and software engineering, interactive multimedia and applied mathematics. EEMCS: Your Connection to the Future.

The Department of Microelectronics has a strong interdisciplinary research and education programme in the areas of 1. health and well-being 2. next generation wireless and sensing technology and 3. safety and security.
With 11 IEEE Fellows among the staff, an excellent microfabrication infrastructure, electrical and physical characterisation facilities, and a strong international academic and industrial network, the department provides high-level expertise in each of these areas throughout the entire system chain.

The Bioelectronics section is a relatively new section that has been created to address coherently the challenges we face in developing wearable, injectable and implantable medical devices. This group conducts research, education and valorisation in the fields of ultra low-power analog and mixed-signal circuits and systems for active wearable, implantable and injectable biomedical microsystems.

Job description

The Bioelectronics group is offering a tenure-track position at the Assistant or Associate Professor level in the field of biomedical circuits and systems. You will further develop existing research topics, such as analog and mixed-mode circuits and systems for wearable and implantable medical devices and create new topics, which may include electroceuticals. You will be involved in teaching at the BSc and MSc levels in the TU Delft’s Electrical Engineering and Biomedical Engineering programmes. Collaborative initiatives are strongly encouraged. You are expected to write research proposals for national and international funding organisations. This is a tenure-track position for a period of five years with the possibility of a permanent faculty position at the end of the contract, subject to mutual agreement.

A Tenure Track, a process leading up to a permanent appointment with the prospect of becoming an Associate or Full Professor, offers young, talented academics a clear and attractive career path. During the Tenure Track, you will have the opportunity to develop into an internationally acknowledged and recognised academic. We offer a structured career and personal development programme designed to offer individual academics as much support as possible. For more information about the Tenure Track and the personal development programme, please visit www.tudelft.nl/tenuretrack.

Requirements

You must have a PhD degree in the field of biomedical circuits and systems (BioCAS) and some years of experience as a post-doc or university professor. You have an excellent academic track record, reflected by peer-reviewed journal publications, conference contributions, and international research experience. An affinity for working on the interface with other disciplines (biomedical engineering, neuroscience, electrophysiology, etc.) and with clinicians and medical researchers is preferred. You should have a demonstrated ability to initiate and direct research projects and to obtain external funding. Experience in teaching and mentoring of students is required. A teaching qualification is recommended. Demonstrated ability in written and spoken English is required.

Conditions of employment

A tenure-track position is offered for six years. Based on performance indicators agreed upon at the start of the appointment, a decision will be made by the fifth year whether to offer you a permanent faculty position.
The TU Delft offers a customisable compensation package, a discount for health insurance and sport memberships, and a monthly work costs contribution. Flexible work schedules can be arranged. An International Children’s Centre offers childcare and an international primary school. Dual Career Services offers support to accompanying partners. Salary and benefits are in accordance with the Collective Labour Agreement for Dutch Universities.
The TU Delft sets specific standards for the English competency of the teaching staff. The TU Delft offers training to improve English competency.
Inspiring, excellent education is our central aim. If you have less than five years of experience and do not yet have your teaching certificate, we allow you up to three years to obtain this.

Information and application

For more information about this position, please contact Prof. Wouter Serdijn, e-mail: W.A.Serdijn@tudelft.nl. To apply, please provide a detailed CV, publication list, and a written statement on your research and teaching interests and vision along with a letter of application and the names and contact details of at least three references. Please e-mail your application by 1 December 2016 to L. M. Ophey, Hr-eemcs@tudelft.nl.
When applying for this position, please refer to vacancy number EWI2016-38.

Enquiries from agencies are not appreciated.