Category Archives: Medical Body Area Networks

Presentatie Wouter Serdijn en Christos Strydis bij opening academisch jaar TU Delft

Hoe kan slimme technologie helpen hersenziektes als epilepsie beter te begrijpen? En hoe kunnen sensoren, implantaten en ultrasoundtechnieken in de toekomst mogelijk helpen om epilepsieaanvallen te voorspellen en te voorkomen? Het kan wanneer verschillende disciplines nauw samenwerken.

Dit stelde Medical Delta hoogleraar prof. dr. Wouter Serdijn tijdens de opening van het academisch jaar van de TU Delft. Serdijn zette samen met dr. ir. Christos Strydis (Erasmus MC, consortiumlid Medical NeuroDelta) uiteen hoe interdisciplinair onderzoek impact kan hebben op bijvoorbeeld mensen met epilepsie.

Bekijk de keynote hier terug

Technology for health: Keynote Wouter Serdijn en Christos Strydis at the Opening of the Academic Year

In Delft and Rotterdam, Wouter Serdijn and Christos Strydis are collaborating on a network of sensors and stimulators for the body. By picking up signals and sending the brain a rapid wake-up call, they hope to be able to predict and prevent epileptic seizures.

Click here for the video of the keynote

Hoe slimme sensoren epilepsy kunnen voorkomen

In Delft en Rotterdam werken Wouter Serdijn en Christos Strydis samen aan een netwerk van sensoren en stimulatoren voor het lichaam. Door signalen op te pikken en razendsnel een wake-upcall naar de hersenen te sturen, hopen ze epileptische aanvallen te kunnen voorspellen en voorkomen. ‘Als we de lus kunnen sluiten, hebben we de techniek binnen drie jaar klaar.’

Epilepsie is een verzamelnaam voor aandoeningen in de hersenen, die ontstaan door een verandering in elektrische activiteit van de hersencellen. Deze neuronen worden ineens overactief en vuren hun elektrische signalen ongecontroleerd in de rondte. Soms leidt dat tot ‘kortsluiting’: aanvallen waarbij een patiënt het bewustzijn verliest of onwillekeurige spiersamentrekkingen krijgt. Dat kan leiden tot gevaarlijke situaties voor de ruim 200 duizend Nederlanders met epilepsie. Maar wat gebeurt er precies tijdens een epileptische aanval? Wat doen die overactieve hersencellen precies? En hoe kunnen we dat proces beïnvloeden? Wouter Serdijn, hoogleraar Bioelektronica aan de TU Delft, probeert antwoord op die vragen te krijgen door technologie te onderzoeken en te ontwerpen voor het monitoren, diagnosticeren en behandelen van epilepsie.

Bij een aanval staan alle neuronen tegelijkertijd te springen. Vooral bij grote aanvallen raken ze letterlijk uitgeput.

 

Onderonsje

‘Ken je de band Rage Against The Machine?’, vraagt Wouter. ‘Ik vergelijk epilepsie altijd met hun liedje Killing in the name of. Epilepsiedeskundigen verklaren me voor gek als ik deze vergelijking maak, maar dit is wel wat ik op de signalen zie. Bij het refrein staat iedereen alleen maar tegelijkertijd te springen.’ Bij een aanval gebeurt hetzelfde met de hersenactiviteit. Dat versterkt het signaal, wat de informatie-uitwisseling tot nul reduceert. De epileptische aanval is een feit.

Dat soort aanvallen zorgen voor een flinke daling van de kwaliteit van leven bij patiënten, zegt Wouter. ‘Al die 200 duizend Nederlanders mogen niet autorijden of zware machinerie besturen.’ Bovendien moeten ze constant oppassen tijdens hun dagelijkse bezigheden: ook stress of lichtflitsen kunnen een aanval uitlokken. Medicijnen werken bovendien niet altijd om aanvallen te voorkomen. ‘Vooral bij grote aanvallen gaan de hersencellen gewoon kapot. Ze raken letterlijk uitgeput en sterven af.’ Wouter zoekt daarom vanuit een technologische invalshoek naar oplossingen om het lichaam te helpen bij het voorkomen van die “eigenzinnige onderonsjes” tussen hersencellen.

Wake-upcall

Als hoogleraar Bioelektronica werkt Wouter aan technologie die de interactie aangaat met de elektriciteit in het lichaam, en probeert hij die te meten en te beïnvloeden. Maar voor epilepsie is dat makkelijker gezegd dan gedaan: je hebt er, net als bij een op en neer springende menigte, weinig vat op. De hele hersenschors – het gebied in de hersenen dat informatie ontvangt, interpreteert en analyseert – is bij het proces betrokken, zegt Wouter. ‘Dus wat je wil is een wake-upcall voor die hele hersenschors, die de natuurlijke communicatie herstelt zonder dat je hem stillegt.’

Samen met het Erasmus MC in Rotterdam onderzoekt hij de rol van de kleine hersenen, het cerebellum, als overbrenger van informatie. ‘Het cerebellum is verantwoordelijk voor de motoriek van ons lichaam en vertakt zich tot in alle delen van de hersenen. Die verbindingen kunnen ons helpen bij het sluiten van de lus: nauwkeurig detecteren waar en wanneer een aanval ontstaat, een interventie doen die alle delen van het brein bereikt, en vervolgens het effect meten van die interventie.’

Rocket science met patiënten

Een van die onderzoekers in het Erasmus MC die de brug vormt tussen kliniek en techniek, is Christos Strydis. Hij is een computeringenieur met Delftse roots, die werkt als Universitair docent bij de afdeling Neurowetenschappen. ‘Soms voel ik me net een vertaler,’ zegt Christos. ‘In Rotterdam is er kennis over de werking van de hersenen en de verbindingen tussen de verschillende hersenonderdelen, en in Delft heeft men ruime ervaring met het bouwen van technologische oplossingen.’ Christos moet beide talen spreken. ‘Sommige bioelektronische oplossingen die we bedenken voor de neurowetenschappen zijn geen rocket science, andere zijn dat welWij ingenieurs zouden nooit ervaring met patiënten kunnen opdoen als we in Delft zouden blijven.’

Als wij ingenieurs allemaal in Delft zouden blijven hangen, zouden we nooit ervaring met patiënten hebben.

 

Vanuit dat idee zetten Wouter en Christos samen een platform op, waarbij ze het medische vraagstuk rond epilepsie beantwoorden vanuit ingenieursperspectief. Ze kregen er een beurs voor vanuit Delft Health Initiative. Hun project, ECLEPSys (Ensemble, Closed-Loop, Epilepsy-Prevention System), bestaat uit een prototype voor een sensornetwerk, dat bestaat uit implanteerbare en draagbare sensoren en stimulatoren. De eerste groep meet signalen uit de hersenen, de tweede koppelt een signaal terug het lichaam in. Dat signaal moet de hersencellen op zo’n manier stimuleren dat ze weer in de pas gaan lopen.

‘Het is eigenlijk hartstikke logisch dat neurowetenschappers en ingenieurs samen optrekken,’ zegt Wouter Serdijn. Hij is hoogleraar Bioelektronica aan de faculteit Elektrotechniek, Wiskunde en Informatica van de TU Delft. Zijn hele wetenschappelijke carrière speelde zich af in Delft: van zijn masterdiploma tot zijn benoeming als hoogleraar. ‘Ik ben een Delftse jongen. Op een bepaalde manier is dat eigenlijk best saai. Maar ik vind het gewoon een geweldige plek.’ Wouter is een van de weinige ingenieurs met een aangeboren interesse in medische technologie. Vanuit zijn expertise in de bioelektronica werkte hij onder andere aan pacemakers, gehoorimplantaten en neurostimulators.

‘Jij noemt het saai, maar je hebt wel al flink wat kilometers op de teller staan,’ zegt Christos Strydis. Hij behaalde zijn masterdiploma Computer Engineering in Griekenland. Zijn carrière in de neurowetenschappen kwam op stoom in Delft, waar hij zijn ingenieursdiploma behaalde en promoveerde. Sindsdien werkt hij als universitair docent op de afdeling Neurowetenschappen bij het Erasmus MC in Rotterdam. Daar vormt hij als ingenieur een brug tussen neurowetenschappen en technologie. Christos kreeg onlangs samen met Wouter een beurs van het Delft Health Initiative voor het uitwerken van het ECLEPSys-project in het kader van Convergence, het samenwerkingsprogramma tussen de TU Delft en het Erasmus MC in Rotterdam.

Zandbak

ECLEPSys behelst het bouwen van een compleet medical body area network (MBAN). Dat is een deels draadloos netwerk van nodes, knooppunten met elk een eigen taak: sensoren, stimulatoren en een computer die de signalen op elkaar afstemt. Een MBAN is doelmatiger dan bestaande technologie, omdat wordt gemeten, bijgestuurd en gerekend op of bij het lichaam. Vooral bij epilepsie kan ECLEPSys daarom een verschil maken, maar Christos denkt groter. ‘Het MBAN kan ook worden toegepast voor de behandeling van andere aandoeningen: hartritmestoornissen, Parkinson, migraine of oorsuizen. We willen laten zien dat het mogelijk is om patiënten te helpen door machine learning en algoritmes toe te passen op biosignalen.’ ECLEPSys moet je zien als een zandbak, waarin ideeën kunnen worden getest. ‘Daarbij kun je denken aan nieuwe sensoren, nieuwe vormen van stimulatie en manieren om data te analyseren. Maar ook dataveiligheid valt binnen dit project.’

Voor epilepsiepatiënten moet ECLEPSys leiden tot een nieuwe behandelmethode, gecombineerd met medicijnen. ‘Mijn verwachting is dat we hiermee epilepsie kunnen onderdrukken of controleren,’ zegt Wouter. ‘Het mooie aan deze vorm van neurostimulatie is dat je het aanzet en dat het dan gelijk werkt. En andersom: dat het direct stopt als je het niet meer wilt. Dat maakt de behandeling persoonlijk en gericht. Zo snel zijn medicijnen nooit: die weten niet waar ze in het lichaam naartoe moeten.’

Werk aan de winkel

Maar zover is het nu nog niet, zegt Wouter. ‘We hebben wel al een systeem dat epileptische aanvallen kan detecteren en onderdrukken, maar dat werkt alleen nog bij muizen. Hun cerebellum heeft veel overeenkomsten met dat van een mens.’ Door de hersengolven te meten en het cerebellum te stimuleren, konden Wouter en Christos een epileptische aanval elders in de hersenen onderdrukken. Daarmee is aangetoond dat het principe werkt, zegt Wouter. ‘We konden binnen 0,4 seconden detecteren dat er een aanval aankwam en hem de kop indrukken.’

Maar voordat patiënten met epilepsie weer veilig achter het stuur kunnen kruipen, is er nog een hoop werk aan de winkel. Zo is het energiebeheer van de sensoren en stimulatoren nog niet optimaal. Bovendien is de techniek die Wouter en Christos gebruiken nog niet vrijgegeven voor mensen. ‘Ons systeem is nog geen netwerk. We werken aan andere manieren om signalen in de hersenen te krijgen. En in plaats van hersenfilmpjes werken we aan andere soorten feedback. We weten dat het lichaam signalen geeft voordat een aanval begint: zweten, verwijde pupillen of een verhoogde hartslag. Die informatie moeten we leren gebruiken.’

Er is bij patiënten een grote variabiliteit. Dat vraagt om een andere aanpak.

 

Vertalen

Voordat Wouter en Christos het systeem bij patiënten kunnen testen, willen ze het eerst zo efficiënt mogelijk maken. De samenwerking tussen Rotterdam en Delft is daarbij essentieel: het realisme van de medische experts in Rotterdam houdt de Delftse ingenieurs met hun getting things done-mentaliteit in toom. ‘Zonder contact met het Erasmus zouden we nooit zover zijn,’ zegt Wouter. ‘Ingenieurs geloven heilig in de kracht van de herhaling. Als we iets twee keer hetzelfde maken, moet het ook hetzelfde werken. Maar bij patiënten gaat dat principe niet op. Er is een grote variabiliteit tussen patiënten, zelfs bij dezelfde patiënt op andere tijdstippen. Dat vraagt om een andere aanpak.’

Bovendien gaat het niet alleen om de techniek, vult Christos aan. ‘Als je dit naar mensen brengt, moet je eerst discussies voeren over ethiek en kwaliteit van leven. Je kunt hersenactiviteit niet overal op het lichaam meten. Wil je een patiënt wel opzadelen met allerlei sensoren op zijn hoofd?’ Toch denkt Wouter dat de techniek achter ECLEPSys binnen afzienbare tijd te vertalen is naar de mens. ‘Met broddelwerk kun je niet bij mensen aankomen. Maar ik ben optimistisch. Als we epileptische aanvallen kunnen voorspellen met de juiste signalen, kunnen we de lus sluiten. Dan hebben we de techniek binnen drie jaar wel klaar.’

Tekst: Koen Scheerders | Portretfoto: Mark Prins

How smart sensors can prevent epilepsy

In Delft and Rotterdam, Wouter Serdijn and Christos Strydis are collaborating on a network of sensors and stimulators for the body. By picking up signals and sending the brain a rapid wake-up call, they hope to be able to predict and prevent epileptic fits. ‘If we can close the loop, we’ll have the technology ready within three years.’

Epilepsy is a collective name for disorders of the brain caused by a change in the brain cells’ electrical activity. These neurons suddenly become overactive, firing their electric signals uncontrollably. This sometimes results in a ‘short-circuit’: seizures where a patient loses consciousness or has involuntary muscular spasms. For the more than 200,000 Dutch people with epilepsy, this can be very dangerous. But what exactly happens during an epileptic fit? What exactly do the overactive brain cells do? And how can we influence that process? Wouter Serdijn, Professor of Bioelectronics at TU Delft, is trying to answer these questions by researching and designing technology for monitoring, diagnosing and treating epilepsy.

In a fit, all the neurons start jumping at the same time. In major seizures especially, they literally become exhausted.

 

Get-together

‘Do you know the band Rage against the Machine?’ asks Wouter. ‘I always compare epilepsy to their song Killing in the name of. Epilepsy experts say I’m mad for making the comparison, but that’s what the signals remind me of. In the chorus, everyone’s jumping all over the place.’ That’s what happens with brain activity during a seizure. It amplifies the signal, reducing the exchange of information to zero. The result is an epileptic fit.

That kind of seizure can really affect patients’ quality of life, says Wouter. ‘All of those 200,000 Dutch people are prohibited from driving or using heavy machinery.’ They also need to exercise constant caution in their day-to-day lives: stress or flashes of light can trigger a seizure. In addition, drugs are not always successful in preventing seizures. ‘In major seizures, the brain cells simply break down. They literally become exhausted and die.’ Wouter is therefore applying a technological perspective in his search for solutions that could help the body prevent these “wayward get-togethers” between brain cells.

Wake-upcall

As Professor of Bioelectronics, Wouter is working on technology that interacts with the electricity in the body, attempting to measure and influence it. But, for epilepsy, that’s easier said than done: just like with the crowd jumping up and down, you have little control over it. The entire cerebral cortex – the area of the brain that receives, interprets and analyses information – is involved in the process, says Wouter. ‘So, what you need is a wake-up call for the whole cerebral cortex that can restore normal communication without bringing it to a standstill.’

Together with the Erasmus MC in Rotterdam, he is conducting research into the role of the cerebellum in conveying information. ‘The cerebellum regulates the body’s motor movements and it branches into all parts of the brain. These connections can help us to close the loop: accurately detecting where and when a seizure develops, making an intervention that can reach all parts of the brain and then measuring the effect of that intervention.’

Rocket science with patients

Christos Strydis is one of the researchers of Erasmus MC who is bridging the gap between the clinic and the technology. A computer engineer with roots in Delft, he works as an assistant professor in the Neurosciences department. ‘I sometimes feel like a translator,’ says Christos. ‘In Rotterdam, there’s a lot of knowledge about brain function and how the different parts of the brain interconnect and the people in Delft have a lot of experience in building technological solutions.’ Christos has to speak both languages. ‘Some of the bioelectronic solutions we devise for neurosciences are not rocket science, but others are. If we stayed in Delft, we engineers would never be able to gain experience with patients.’

If we engineers all stayed in Delft, we would never have experience with patients.

 

With that in mind, Wouter and Christos are setting up a platform to explore the medical issues surrounding epilepsy from an engineering perspective. They have received a grant from the Delft Health Initiative for their work. Their project ECLEPSys – Ensemble, Closed-Loop, Epilepsy-Prevention System – consists of a prototype for a sensor network made up of implantable and wearable sensors and stimulators. The first group measures signals from the brain and the second links a signal back into the body. The idea is that the signal should stimulate the brain cells in such a way that they revert back to normal.

‘It’s actually totally logical for neuroscientists and engineers to join forces,’ says Wouter Serdijn. He is Professor of Bioelectronics in TU Delft’s Faculty of Electrical Engineering, Mathematics and Computer Science. He has spent his academic career in Delft: from his Master’s degree to his appointment as professor. ‘I’m a Delft boy. In some ways that’s actually quite boring. But I just think it’s an amazing place.’ Wouter is one of the few engineers with an innate interest in medical technology. He applies his expertise in bioelectronics to his work on such areas as pacemakers, hearing implants and neurostimulators.

‘You call it boring, but you have quite a few miles on the clock,’ says Christos Strydis. He did his Master’s degree in Computer Engineering in Greece. His career in neurosciences took off in Delft, where he qualified as an engineer and completed a doctorate. Since then, he has worked as an assistant professor in the Neurosciences department at Erasmus MC in Rotterdam. As an engineer there, he forms a bridge between neurosciences and technology. Together with Wouter, Christos was recently awarded a grant by the Delft Health Initiative to develop the ECLEPSys project as part of Convergence, the joint programme of TU Delft and Erasmus MC in Rotterdam.

Sandpit

ECLEPSys involves building a complete medical body area network (MBAN). This is a partly wireless network made up of nodes, each with its own task: sensors, stimulators and a computer that coordinates the signals with each other. An MBAN is more effective than existing technology because it is measured, adjusted and calculated on or next to the body. ECLEPSys can therefore make a difference in epilepsy in particular, but Christos has even bigger ideas. ‘The MBAN could also be used to treat other disorders: heart arrhythmia, Parkinson’s, migraine or tinnitus. We aim to demonstrate that it is possible to help patients by applying machine learning and algorithms to biosignals.’ ECLEPSys can be compared to a sandpit, where ideas can be tested. ‘Examples could include new sensors, new forms of stimulation and ways of analysing data. But the project also encompasses data security.’

For epilepsy patients, it is hoped that ECLEPSys will bring about a new treatment method, combined with drugs. ‘I expect that this will enable us to suppress or control epilepsy,’ says Wouter. ‘The great thing about this type of neurostimulation is that you just switch it on and it works immediately. And vice-versa: you stop if you no longer want it. That makes treatment personal and targeted. Drugs can never be so fast: they don’t know where in the body they’re supposed to go.’

Work to be done

But that is still some way off, says Wouter. ‘We already have a system that can detect and suppress epileptic fits but it only works with mice at the moment. Their cerebellum is very similar to that of humans.’ By measuring brainwaves and stimulating the cerebellum, Wouter and Christos were able to suppress an epileptic fit elsewhere in the brain. That demonstrates that the principle works, says Wouter. ‘We were able to detect that a fit was coming within 0.4 seconds and stop it.’

But before epileptic patients can start driving again, there’s still a lot of work to be done. The energy management of the sensors and stimulators requires improvement, for example. The technique that Wouter and Christos are using has still not been cleared for use on humans. ‘Our system is still not a network. We’re working on other ways of getting signals into the brain. Instead of EEGs, we’re working on different types of feedback. We know that the body sends signals before a fit starts: sweating, dilated pupils or an increased heartbeat. We need to learn to use that information.’

There is significant variability between patients. That calls for a different approach.

 

Translating

Before Wouter and Christos can use the system on patients, they aim to make it as efficient as possible first. The collaboration between Rotterdam and Delft is essential in this: the realism of the medical experts in Rotterdam keeps the Delft engineers and their get-things-done mentality in check. ‘We would never have made such progress without our contact with Erasmus,’ says Wouter. ‘Engineers believe in the power of repetition. If we make something twice the same way, it also needs to work the same way. That principle does not work on patients. There is significant variability between patients, and even in the same patient at different times. That calls for a different approach.’

Besides that, it’s not only about the technology, adds Christos. ‘Before rolling this out to more people, you have to discuss such issues as ethics and quality-of-life. You cannot measure brain activity everywhere in the body. Do you really want to burden a patient with all kinds of sensors on his head?’ Despite this, Wouter thinks that the technology behind ECLEPSys can be translated for human use within the foreseeable future. ‘You cannot apply substandard work on people. But I’m still optimistic. If you can predict epileptic fits with the right signals, we can close the loop. Then we’ll have the technology up-and-running within three years.’

Text: Koen Scheerders | Portrait photo: Mark Prins

Link

Voor een ingenieur is het prima te begrijpen wat er in de hersenen gebeurt

Auteur: Pieter Edelman

Bits & Chips, d. 14 oktober 2016

Omdat het lichaam gedeeltelijk elektrisch werkt, kunnen veel aandoeningen elektronisch worden behandeld. Dat is de gedachte achter de opkomende beweging van de ‘elektroceutica’, de elektronische tegenhanger van de farmaceutica. TU Delft-hoogleraar Wouter Serdijn vertelt over de ontwikkelingen en uitdagingen van het veld.

Farmaceutica is tot nu toe bijna het exclusieve domein geweest van de scheikunde, maar wellicht dat de elektronica de komende jaren net zo’n belangrijke rol gaat spelen. Het lichaam werkt immers gedeeltelijk elektrisch: denk aan de hersenen en het zenuwstelsel en het hart en andere spieren. Er zijn sterke aanwijzingen dat patiënten bij veel aandoeningen baat kunnen hebben bij een elektronische ingreep.

De aanpak wordt natuurlijk al toegepast. Cochleaire implantaten kunnen uitkomst bieden voor mensen met gehoorproblemen door direct signalen naar de gehoorzenuw te sturen. Hartritmestoornissen kunnen met een elektronische pacemaker worden gecorrigeerd. En bij Parkinson of chronische depressie kunnen elektrodes diep in het brein ontregelde elektrische activiteit aldaar tegengaan. Minister Schippers van Volksgezondheid heeft net aangekondigd om elektrostimulatie van het ruggenmerg bij chronische darmklachten te vergoeden.

Toch is dat in zekere zin nog pionierswerk. Volgende generaties van de aanpak kunnen de behandelingen waarschijnlijk nog aanzienlijk verbeteren. En niet alleen op neurologisch gebied; ook chronische aandoeningen zoals diabetes en astma zouden er baat bij kunnen hebben. Met als grote voordeel dat de behandeling, in tegenstelling tot bij medicijnen, kan worden toegespitst op het doelgebied, waardoor bijwerkingen mogelijk veel kleiner zijn.

Een duidelijk teken dat er iets te gebeuren staat, is dat de Britse farmareus GSK (Glaxosmithkline) eerder dit jaar de handen ineen heeft geslagen met Verily, zeg maar de medische tak van Google, om het nieuwe bedrijf Galvani Bioelectronics op te richten, dat exclusief onderzoek doet naar ‘elektroceutica’. Ze trekken samen 540 miljoen Britse pond uit voor het onderzoek de komende zeven jaar.

Een kolfje naar de hand van Wouter Serdijn, die de vakgroep Bio-elektronica aan de TU Delft leidt en zich de laatste jaren precies hierop profileert. ‘De term ‘elektroceutica’ bestond eigenlijk al langer, maar GSK is er een paar jaar geleden een betekenis aan gaan geven die exact de lading dekte van wat ik op dat moment deed. Dus toen ben ik daarmee verdergegaan.’

Niet dat hij medisch onderlegd is; zijn onderzoek richtte zich in eerste instantie op energiezuinige analoge ic’s en draadloze communicatie, pure elektrotechniek dus. De toepassingen ervan kwamen tijdens zijn carrière echter steeds meer te liggen bij implanteerbare devices, en dat effect heeft zichzelf versterkt: ‘Ik profileerde me altijd als low-power circuit-man, maar op een gegeven moment deed iedereen dat. Dus toen ging ik nadenken over wat mij nu onderscheidt van anderen, en dat waren de medische toepassingen, dus toen ben ik gaan spreken over biomedische elektronica. Op dat moment wisten de mensen uit de medische industrie me ineens te vinden. Heel gek, maar toen kwamen er ineens mensen die zeiden dat ze wat hebben aan ons onderzoek. Terwijl dat daarvoor ook zo zou zijn, maar dat werd nog niet gezien.’

De Bio-elektronica-groep komt nu regelmatig over de vloer bij academische ziekenhuizen – vooral die in Leiden en Rotterdam – maar ook bij de grote spelers op het gebied van implanteerbare devices. ‘We doen geen productontwikkeling voor hen, maar ze houden ons wel heel goed in de gaten als we weer een stap zetten in energiezuinig stimuleren en dergelijke. En dan willen ze ook wel van ons weten hoe het zit. Er zitten zeg maar stukjes Delft in patiëntenharten.’ Het mag dan ook geen verrassing heten dat Serdijn contacten heeft lopen bij GSK en al aan het kijken is of er gezamenlijke projecten mogelijk zijn met Galvani.

Dat laatste medische bolwerk

Spijt van die profilering heeft hij zeker niet; er blijken best raakvlakken te zijn tussen de elektronica en de biologie. ‘We geven hier al jaren het vak bioelectricity, dat gaat over de elektrische activiteit van cellen. Je kunt gewoon die interactie aangaan met neurostimulatoren en cochleaire implantaten en dergelijke. En voor een ingenieur is het eigenlijk prima te begrijpen wat er in de hersenen gebeurt – natuurlijk niet de psychologische processen maar wel de basale neurale processen. Het is ook fascinerend dat technologie kan inhaken op zeg maar dat laatste medische bolwerk, waar zo veel belangrijks van ons in zit maar waar we nog zo weinig van weten. Dat merk ik ook bij studenten.’

Juist het gebied van hersenstimulatie wordt echter nog weleens bestempeld als ‘middeleeuws’, een karakterisering die Serdijn onderschrijft: ‘Eigenlijk zijn het nog steeds een soort knipperlichten die in je hoofd gaan: ze geven met een strikte regelmaat een puls af. Maar je wilt daar slechts enkele cellen mee bereiken en die zijn heel erg klein, van een heel andere ordegrootte dan de afmetingen van de elektrodes. Als je dat misschien iets meer doseert, bijvoorbeeld door een burst te geven in plaats van een tonische puls, dan stimuleer je misschien net alleen de cellen die je wilt bereiken. Maar het is opvallend dat het bepalen van de juiste vorm van stimulatie vandaag de dag vooral gebaseerd is op trial-and-error.’

‘Het is ook wel grappig om te zien trouwens dat die neurostimulatoren momenteel al veel meer kunnen dan waarvoor ze zijn vrijgegeven. Fabrikanten brengen al ondergronds die geavanceerde stimulatiepatronen in, hoewel die nog niet gebruikt mogen worden omdat niet onomstotelijk is vastgesteld dat er geen ongewenste effecten optreden. Maar wanhopige patiënten willen best ver gaan als ze daarmee geholpen worden. Het is niet zo moeilijk om die functionaliteit in te bakken.’

Joh, ingenieur

Het minder goede nieuws voor Serdijns groep is dan ook dat er niet altijd evenveel technisch-wetenschappelijke eer te behalen valt aan de toepassingen. ‘Met de ‘vrijdagmiddagprojecten’ van ons kunnen we best al een grote impact hebben voor neurowetenschappers. We hebben bijvoorbeeld op een gegeven moment met een Beaglebone en eenvoudige analoge elektronica een systeem in elkaar gezet waarmee we closed-loop een muis vrij konden krijgen van epileptische aanvallen. Voor ons was dat gewoon een pcb’tje met een paar discrete componenten en een microcontroller; in feite stelde het niks voor. Maar het heeft wél een grote impact op het neurowetenschappelijke domein. En we hebben wel meer van dat soort dingen hier gehad.’

Het is dan ook niet altijd makkelijk om de juiste samenwerkingen op te zetten met de medici, merkt Serdijn. ‘Zwart-wit gezegd zijn er medisch wetenschappers of artsen die herkennen dat jij ook een specialisme vertegenwoordigt, en anderen die dat niet doen, die zeggen van: joh ingenieur, trek even die oplossing van de plank die ik nodig heb. Dan loopt de samenwerking heel snel dood. Maar als het wel lukt om van elkaar te begrijpen wat nou echt de uitdaging is en elkaars taal te spreken, dan heb je een dijk van een samenwerking. Dat is echt heel erg leuk.’

‘Je ziet nu ook wel dat er een behoefte aan het ontstaan is om die kloof tussen de medische en technische wereld te dichten. Ook vanuit de medische hoek. Dat heeft ook met het financieringsklimaat te maken. Ik heb het eerlijk gezegd weleens geprobeerd hoor, een project voor neurostimulatoren bij STW inzenden zonder daar een arts bij te betrekken. Maar ook al haal ik de relevante specificaties uit de literatuur, dan nog krijg ik de vraag of de arts het ermee eens is dat dit ook een verbetering is.’

En eerlijk is eerlijk, daarmee hebben ze wel een punt, moet Serdijn toegeven. ‘Bij die muis bijvoorbeeld hebben we gestimuleerd in de kleine hersenen, maar de meting was op de cortex, een andere plek. Zou ik niet hebben bedacht, want dat is niet mijn vakgebied. De elektronische oplossing is er nauwelijks door veranderd, maar er was dus nog wel een extra stap te maken. En soms zijn er andere dingen belangrijker dan alleen maar de technologische innovatie. Uiteindelijk moet het zijn weg vinden naar een kliniek en dan kunnen dat soort aspecten een rol spelen.’

Poor man’s silicon

Voor het elektroceutica-concept is er voor elektronici gelukkig nog meer dan genoeg te doen. Een van de belangrijke thema’s is terugkoppeling, zodat de neurostimulator zich kan aanpassen aan de reactie van het lichaam op de pulsen. Maar dit is nog problematisch, want hoe meet je de minuscule respons van een zenuwcel tegen de achtergrond van de veel grotere stimulatiepuls? ‘Die elektronica hebben we dus nog niet, maar er zijn verschillende manieren om dat aan te pakken’, vertelt Serdijn. ‘Je kunt het in het spatiële domein oplossen, dus gewoon verderop aan de zenuwbaan meten wat het effect is. Dat wordt bijvoorbeeld toegepast voor ruggenmergstimulatie. Je kunt het ook in het tijddomein proberen op te lossen. Je meet dan eerst het signaal na stimulatie en vlak daarna doe je dat nog een keer als die zenuw eigenlijk nog een beetje doof is, dus dan krijg je alles behalve de neurale respons. Wij proberen het te doen met een ad-omzetter die zich snel aanpast, die dus heel snel die stimulus volgt en daarbovenop dus die fijne resolutie probeert te pakken.’

Daarnaast richten de methodes zich nu nog vooral op het centrale zenuwstelsel, dat wil zeggen: de hersenen en het ruggenmerg. Maar voor veel van de nieuwe toepassingen, zoals die van Galvani, wordt het perifere zenuwstelsel beoogd, ofwel de vertakkende zenuwbundels die door het lichaam lopen. Daarmee moet het mogelijk zijn om de signalen naar specifieke organen te adresseren. Bovendien maken deze zenuwbundels – waarschijnlijk – allerlei onvoorziene interacties mogelijk. ‘Het AMC in Amsterdam heeft bijvoorbeeld aangetoond dat je door stimulatie van zo’n zenuwbundel reumatische artritis, die ontstekingsreacties die zich in de gewrichten voordoen, kunt onderdrukken. Dus door elektrische stimulatie kun je iets chemisch teweegbrengen verder op die zenuwbaan.’

De aanpak vraagt wel om geheel andere vormfactoren. ‘Tot nu toe zijn stimulatoren altijd gewoon blikjes, en die zijn stijf en groot en vooral gevuld met batterij. Dat moet dus anders, want je kunt ze niet eventjes rondom een zenuw aanbrengen die naar de maag toe loopt of zo. Elektronisch gezien is het exact dezelfde uitdaging, maar je moet elektronica maken die meebeweegt, want bijvoorbeeld zo’n maag staat te kneden en gaat op en neer.’

‘Wat momenteel best veel in de aandacht staat en waar wij ook mee werken, is PDMS, siliconenrubber. Ik verwacht dat je op den duur een soort hybride oplossing krijgt met flexibele actieve elektrodes in een soort poor man’s silicon die zich over grotere afstand kunnen verdelen en wat preprocessing doen. En je hebt natuurlijk een flexibele antenne voor energieoverdracht en de communicatie. Maar het hart van het implantaat zal gewoon een braaf high-performance cmos-ic zijn.’

Een andere stap is het inbouwen van leds in de neurostimulatoren. Dit heeft te maken met een techniek die de laatste jaren sterk in opkomst is: optogenetica, een techniek waarbij zenuwcellen via genetische modificatie lichtgevoelig worden gemaakt, zodat ze onder invloed van licht een puls vuren of juist onderdrukken. ‘Het grote voordeel is dat je die injectie heel lokaal kunt doen en dus alleen die cellen lichtgevoelig maakt die je wilt stimuleren. Dus het kan spatieel nog veel selectiever zijn dan elektrische stimulatie.’

‘Maar goed, het is dus wel genetische modificatie en dat is niet geaccepteerd om bij mensen te doen. Maar op het moment dat het een veel betere behandelingsoptie wordt, zou dat wel eens kunnen veranderen. De langetermijneffecten zijn nog niet bekend, maar ik denk dat mensen die nu al ondraaglijke pijn lijden niet lang hoeven na te denken of ze dat zouden willen.’

Slimme contactlenzen en andere medische gadgets in je lijf

Een ‘slimme’ contactlens kan het leven van een diabetespatiënt een stuk eenvoudiger maken.

Veel mensen met diabetes moeten meerdere malen per dag hun bloedsuiker meten. Dat moet nu nog met een pijnlijke vingerprik. Vervelend en vaak onnodig, daarom wordt hard gewerkt aan alternatieve methoden.

Onderzoekers van de technische universiteit van Ulsan in Zuid-Korea zeggen nu een lens te hebben ontwikkeld die bloedsuikerwaarden uitmeet. Over deze lens en andere bio-elektronische medicijnen praten we met Wouter Serdijn. Hij is hoogleraar bio-elektronica aan de TU Delft.

Podcast op NPO1, Nieuwsweekend, uitgezonden zaterdag 27 januari 2018.

Google wil nu ook data uit je lichaam

Google wil nu ook data uit je lichaam

Bio-elektronica Techbedrijven verzamelen met farmareuzen zeer gevoelige informatie over medische aandoeningen. Ligt die straks bij je baas of je verzekeraar?

MRI-scan van een jongen van 9. Aan het verzamelen en verwerken van medische data kleven privacyrisico’s. Foto ANP

Wouter van Noort, NRC Handelsblad, 7 augustus 2016

Gadgets die werken als medicijnen. Het is de toekomst als een groeiende groep farmacie- en technologiebedrijven zijn zin krijgt. Googles moederbedrijf Alphabet kondigde vorige week een samenwerking aan met farmareus GlaxoSmithKline (GSK) op het gebied van zogeheten bio-elektronica, minuscule implanteerbare apparaatjes die via elektrische signalen ziektes kunnen genezen en voorkomen. Ook Apple en Samsung werken al een tijdje aan bio-elektronica en biosensoren: meetapparaatjes voor lichamelijke functies die je zowel buiten als binnen in je lijf kunt dragen.

Apple en Samsung hebben, net als Google, bovendien steeds nauwere banden met de farmaceutische industrie. Googles zusterbedrijf Verily, dat zich helemaal richt op farmaceutische toepassingen, sloot op andere gebieden al eerder samenwerkingen met Johnson & Johnson en Novartis. Apple werkt ook samen met GSK, en Samsung investeert veel om zelf meer een farmaceutisch bedrijf te worden.

Dat juist bedrijven uit de consumententechnologie ineens zo geïnteresseerd zijn in de farmacie, en vooral in de bio-elektronica, roept interessante vragen op. Met name over privacy: behalve informatie óver mensen, kunnen technologiebedrijven dankzij bio-elektronica straks namelijk ook data verzamelen ín mensen.

„Ik ben er niet gerust op”, zegt Wouter Serdijn, hoogleraar bio-elektronica aan de TU Delft en London University College. „Een bedrijf als Google weet al heel veel van je, en juist als je gegevens uit bio-elektronica combineert met grote hoeveelheden andere data, ontstaan mogelijk interessante inzichten over de gezondheid van individuen.”

Die inzichten kunnen nuttig zijn voor de genezing van bepaalde aandoeningen, maar er zitten ook privacyrisico’s aan. Ook de Haagse technologiedenktank Rathenau Instituut spreekt al jaren zijn zorgen uit over privacygevolgen van geïmplanteerde elektronica.

Wat kunnen techbedrijven nou precies te weten komen ín een lichaam? „Het gaat met de huidige bio-elektronica vooral om de communicatie tussen cellen of bijvoorbeeld informatie over de zuurtegraad in je darmen”, zegt Serdijn. Volgens hem is de informatie die uit bio-elektronica en -sensoren komt op zichzelf commercieel nog niet direct heel bruikbaar. Maar gecombineerd met andere informatie, over bijvoorbeeld lichaamsbeweging, zijn daar mogelijk wel interessante patronen in te ontdekken. „Dan zou je er mogelijk zaken als epileptische aanvallen mee kunnen voorspellen, en misschien wel andere ernstige aandoeningen”, zegt Serdijn. En dat is informatie die je niet altijd wilt delen met je werkgever of verzekeraar.

GSK wil geen details geven over hoe het informatie uit bio-elektronica precies gaat delen met Googles zusterbedrijf Verily. Wel zegt woordvoerder Carien Mulder: „Wij staan honderd procent voor het waarborgen van vertrouwelijke patiënteninformatie, en dat is ook een prioriteit in de nieuwe samenwerking met Verily.” Ze geeft echter geen antwoord op wat er precies is afgesproken over de data die er worden verzameld in het lichaam.

Een woordvoerder van Alphabet kon niet op tijd reageren op vragen van NRC. Wel zei Brian Otis, de technologiedirecteur van Alphabet-dochter Verily, vorige week tegen het Amerikaanse Forbes Magazine dat het zijn bedrijf bij deze samenwerking vooral te doen is om de data. „De uitdaging met bio-elektronica zit ’m uiteindelijk in data. Het uitlezen en interpreteren van de signalen. Natuurlijk heeft Google expertise in het omgaan met grote hoeveelheden data, beslissingen nemen op basis van data en feedback geven aan de gebruiker.”

Google beschikt over enorm veel gegevens over menselijk gedrag. Via de Android-smartphones van het bedrijf verzamelt het ook veel informatie over bijvoorbeeld lichaamsbeweging. Het blijkt bij dit soort big data-toepassingen vaak erg lastig om verbanden tussen gegevens te ontdekken die ook echt bruikbaar zijn. Maar juist een bedrijf als Google is daar heel goed in.

Informatie uit bio-elektronica zou ook bepaald niet de eerste medische data zijn die Google de laatste tijd verzamelt. Via de zoekmachine ziet het bedrijf al jaren welke medische vragen bezoekers stellen. Via zusterbedrijf 23andMe, dat genetische tests ontwikkelt, heeft Google de laatste jaren daarnaast van vele duizenden mensen DNA-informatie verzameld. Onlangs sloot het een samenwerking met de Britse National Health Service voor het analyseren van grote hoeveelheden patiëntengegevens van Britse burgers.

Dat zijn zeer uiteenlopende projecten, met ook zeer uiteenlopende privacyvoorwaarden. Het is niet automatisch zo dat Google met die informatie allerlei gedetailleerde profielen opbouwt die het zomaar kan herleiden tot individuen. Laat staan dat het die zomaar kan doorverkopen, als het bedrijf dat al zou willen. Er gelden voor medische gegevens strengere privacywetten dan voor andere soorten informatie.

Maar de Amerikaanse technologiereus verdient wel veruit het meeste van zijn geld met op maat gemaakte advertenties. En als je advertenties op basis van je zoekgeschiedenis krijgt voorgeschoteld, waarom dan niet op basis van data uit een biosensor die uitwijst dat je binnenkort misschien behoefte krijgt aan een bepaald medicijn?

„Zover is het voorlopig waarschijnlijk nog niet,” zegt hoogleraar Serdijn. „Maar het is wel zaak om dit heel goed in de gaten te houden.”

HOE BIG PHARMA EN BIG TECH SAMENWERKEN

Apple sloot in juli een samenwerking met Glaxo Smith Kline (GSK) om behandelingen te ontwikkelen voor reuma. GSK gaat daarvoor Apples onderzoekssoftware ResearchKit gebruiken. Dat platform brengt allerlei gegevens samen die Apple over zijn gebruikers verzamelt, bijvoorbeeld over lichaamsbeweging. Die is te meten via de bewegingssensoren in iPhones. Dergelijke sensoren kunnen volgens de twee bedrijven ook worden gebruikt om nauwkeuriger in kaart te brengen hoe reuma het leven van patiënten beïnvloedt.

Googles zusterbedrijf Verily werkt samen met Novartis om een slimme contactlens te ontwikkelen die bloedsuiker meet in het oogvocht van diabetespatiënten. Zo’n lens zou in de plaats kunnen komen van andere manieren om bloedsuikers te meten, bijvoorbeeld van de bloedprikken die nu gebruikelijk zijn.

Telefoonmaker Samsung investeert ook fors in biotech en farmacie, onder meer via Samsung Bioepis en Samsung Biologics.

Lecture on Electroceuticals: getting better with electricity

Lecture on Electroceuticals: getting better with electricity

Lecture on Electroceuticals: getting better with electricity

On May 6, 2015, Collegerama of TU Delft made video recordings of the lecture I gave on Electroceuticals.

Electroceuticals are the electronic counterparts of pharmaceuticals and are miniature electronic devices that interact with the body in an electrical fashion.

In this talk I discuss: neurostimulation and the need to make neurostimulators smaller, more power efficient and more intelligent; optogenetic neuromodulation and the need to make this new neuromodulation modality operate in a closed-loop fashion; neurosensing devices to make neurostimulators intelligent and thereby adjust themselves to the therapeutical needs of the patient; autonomous wireless sensor nodes that can measure temperature or the electrocardiogram without the need for a battery; an outlook into the future of electroceuticals with the promise to treat a larger variety of neurological and brain disorders better.

Click here to start watching the video and slides:

https://collegerama.tudelft.nl/Mediasite/Play/cc7888beb88349c1a60c1414476b577a1d?catalog=528e5b24-a2fc-4def-870e-65bd84b28a8c

Injectable Electronics: dawn of a new era in electroceuticals?

Injectable electronics still need to become smaller

Frequent readers of this weblog may still remember a previous post, entitled “And the paralyzed will walk again“. This phrase comes from a Discovery Channel movie/documentary, called “2057: the body”, in which it is predicted that by the year 2057 you will be able to survive a three story fall and even be able to walk again as there will be tiny microstimulators attached to your muscles, which can be injected.

Injectable electronics, how fascinating would that be! No more lengthy surgeries, during which only a single, bulky device is implanted, but rather a procedure that takes less than a couple of minutes, during which multiple micro-stimulators are inserted via a seringe. Once done, these stimulators will form a wireless network and will provide the motory neural pathway with well-timed electric stimuli necessary to evoke the correct contraction of the multiple muscles involved in a delicate movement or even seemingly simple posture control.

But how feasible is this idea of injectable electronics? If you search for the term injectable electronics, you will most likely find a lot of references to the work of John Rogers, professor at the University of Illinois in the US, who built “an electronic LED device so tiny it can be injected into delicate tissue, such as in the brain, without harming it“.
Other links that can be found refer to work done on silk implants or even magnesium implants that are either stretchable or can easily dissolve into the body once the good work has been done.

I personally believe that we only can create injectable electronic devices if they have at least some intelligence in them. For this, the good old silicon would be an excellent candidate. Silicon is a nice and friendly biocompatible material, can be made bendable (by thinning the substrate) or stretchable (by removing the substrate altogether at some points). And what’s more, silicon can accommodate stimulation circuitry, sensors, signal processing, communication electronics, antennas, battery foils, all the good stuff needed to make a good injectable.

Of course, in order not to damage the tissue that the electronic device is injected in, it needs to be small, i.e., thin and narrow. It is however allowed to make it long, e.g., a couple of millimeters up to one or two centimeters. These unconventional dimensions raise very exciting technological challenges, such as:

  • how can we create electronic integrated circuits (ICs) that are merely one-dimensional, i.e., are not wider than one, maximally two, bondpads?
  • how can we transfer information and energy to an implant that has virtually no area?
  • what kind of material should we use for the antenna and electrodes?
  • will a Li-Ion battery foil have enough capacity to provide successful stimulation of the tissue, or should we refrain from using batteries altogether?

There obviously is still a lot to do. Exciting stimes ahead, if you ask me.

Wouter

A new name, but Biomedical Electronic remains

Biomedical Electronics Lab

Dear Reader,

The Biomedical Electronics Group underwent a small name change. From now onwards, the group is called “The Biomedical Electronics Laboratory”.

Its mission is “to provide the technology for the successful monitoring, diagnosis and treatment of cortical, neural, cardiac and muscular disorders by means of electroceuticals.”

To this end it conducts research on, provides education in and helps creating new businesses in neuroprosthetics, biosignal conditioning / detection, transcutaneous wireless communication, power management, energy harvesting and bioinspired circuits and systems.