About the Bioelectronics blog
In this weblog you can find the latest information on ongoing activities in and contributions by the Section Bioelectronics of Delft University of Technology. In this group we are working on Biosensors, Organs on Chip, Flexible Implants, Artificial Retinas, Spinal-Cord Implants, Medical Body-Area Networks, Energy Harvesting, Neurosensing Devices, Neurostimulators, Electroceuticals and Bioelectronic Medicines
-
Recent Posts
- Oorsuizen kan ondraaglijk zijn. Maar dankzij nieuwe behandelingen gloort er hoop
- Meer informatie over tinnitus en het Delft Tinnitus Device
- Met een klemmetje en een koptelefoon van het gekmakende oorsuizen af
- Technologie waar je stil van wordt: een apparaat tegen tinnitus
- Luister terug: Oorzaken, ervaringen en een oplossing? ‘Kwestie van geluid’
Categories
- Bioelectronic Medicine (9)
- Brain-Machine Interfaces (32)
- Education (60)
- Electronics (56)
- Energy Harvesting (16)
- General (249)
- Implantables (9)
- Medical Body Area Networks (15)
- Music (5)
- Neonatology (9)
- Neurostimulation and Neuromodulation (71)
- Pacemakers (16)
- Technology for Neuroscience (1)
- Understanding the Brain (67)
- Wearables (3)
Archive
Meta
Disclaimer
De meningen ge-uit door medewerkers en studenten van de TU Delft en de commentaren die zijn gegeven reflecteren niet perse de mening(en) van de TU Delft. De TU Delft is dan ook niet verantwoordelijk voor de inhoud van hetgeen op de TU Delft weblogs zichtbaar is. Wel vindt de TU Delft het belangrijk - en ook waarde toevoegend - dat medewerkers en studenten op deze, door de TU Delft gefaciliteerde, omgeving hun mening kunnen geven.
Category Archives: Neurostimulation and Neuromodulation
TU Delft en Inholland ontwikkelen chip voor beter gehoor
13 juli 2017
http://nieuws.inholland.nl/tu-delft-en-inholland-ontwikkelen-chip-voor-beter-gehoor/
Een chip die ervoor zorgt dat doven en slechthorenden beter horen met hun gehoorimplantaat, waardoor hun kwaliteit van leven toeneemt. Dat is het ambitieuze streven van project ReaSONS II Demo van de TU Delft en Inholland. Onlangs kreeg het project subsidie van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). Docent-onderzoekers en studenten van verschillende onderwijsdomeinen zullen gezamenlijk aan dit project werken.
Onderzoekers van de TU Delft ontwikkelden een chip die de zenuwactiviteit in het oor nauwkeurig kan meten. In combinatie met een cochleair implantaat kan hij slechthorende en dove mensen veel beter laten horen. De chip is echter nog incompleet. Daarom heeft de TU Delft in samenwerking met Inholland financiering aangevraagd om de ontwikkeling ervan voort te zetten onder de naam ReaSONS II Demo. Het uiteindelijke doel is om bedrijven een prototype aan te bieden dat ze kunnen toepassen in hoorproducten. De NWO kende de Demonstrator-subsidie vorige maand toe.
Beter meten van zenuwactiviteit
Wereldwijd hebben vele slechthorende of dove mensen een cochleair implantaat, een prothese die het gehoor tot op zekere hoogte kan herstellen. De kwaliteit ervan is nog ver verwijderd van die van het natuurlijke gehoor. Dat komt deels doordat het gehoorimplantaat niet goed in staat is om te meten of de gehoorzenuw op de juiste manier geprikkeld is door stimuli, in dit geval elektrische pulsen. Onderzoekers van de TU Delft en Inholland willen met de ReaSONS II Demo een systeem realiseren dat zenuwactiviteit van de menselijke gehoorzenuw vastlegt, waardoor het implantaat deze beter kan meten. Zo wordt er een eerste stap gezet richting een gehoorimplantaat dat zichzelf optimaal aanpast aan de behoefte van de patiënt. Gedurende de looptijd van 1,5 jaar wordt op technisch vlak onder meer de interface met de gebruiker verder uitgewerkt. Daarnaast wordt de markt verkend om geschikte kandidaten te vinden die de technologie kunnen overnemen.
Wereldwijd hebben vele slechthorende of dove mensen een cochleair implantaat, een prothese die het gehoor tot op zekere hoogte kan herstellen. De kwaliteit ervan is nog ver verwijderd van die van het natuurlijke gehoor. Dat komt deels doordat het gehoorimplantaat niet goed in staat is om te meten of de gehoorzenuw op de juiste manier geprikkeld is door stimuli, in dit geval elektrische pulsen. Onderzoekers van de TU Delft en Inholland willen met de ReaSONS II Demo een systeem realiseren dat zenuwactiviteit van de menselijke gehoorzenuw vastlegt, waardoor het implantaat deze beter kan meten. Zo wordt er een eerste stap gezet richting een gehoorimplantaat dat zichzelf optimaal aanpast aan de behoefte van de patiënt. Gedurende de looptijd van 1,5 jaar wordt op technisch vlak onder meer de interface met de gebruiker verder uitgewerkt. Daarnaast wordt de markt verkend om geschikte kandidaten te vinden die de technologie kunnen overnemen.
“
Dit project heeft impact op de kwaliteit van leven van mensen die een gehoorimplantaat gebruiken. We werken op het snijvlak van techniek en gezondheidszorg.
Cees Jeroen Bes, onderzoeker bij de TU Delft, ontwikkelaar van de ReaSONS-chip
„
Samenwerking tussen domeinen
Inholland voert dit project uit met behulp van docent-onderzoekers en studenten van de onderwijsdomeinen Techniek, Ontwerpen en Informatica (TOI) en Gezondheid, Sport en Welzijn (GSW). Het onderzoek wordt uitgevoerd door het kernteam Biomedical van het Domein TOI in samenwerking met het Inholland Health and Technology Centre (IHTC). De opgedane kennis wordt ingezet binnen de curricula van de betrokken opleidingen als voorbeelden tijdens de instructiecolleges, als projectopdracht en afstudeeropdracht. Met dit project denkt Inholland op wereldniveau mee over innovatieve oplossingen op het gebied van gezondheid.
Technisch hoogstandje
Cees Jeroen Bes, docent-onderzoeker en projectleider van het kernteam Biomedical, kent als geen ander de gebruikte technologie. Hij bedacht en implementeerde het concept achter de chip en promoveert er binnenkort op aan de TU Delft. “Nu is het tijd om de chip door te ontwikkelen van een proof-of-concept naar prototype en er een showcase van te maken”, zegt Bes. “Het project is niet alleen een technisch hoogstandje, het heeft ook nog eens impact op de kwaliteit van leven van mensen die een gehoorimplantaat gebruiken. We werken daarbij op het snijvlak van techniek en gezondheidszorg.”
Het project ReaSONS II Demo kent een gebruikerscommissie waarin de bedrijven Healthtech, Advanced Bionics, Twente Medical Systems, Applied Biomedical Systems en mede-patenthouder Leids Universitair Medisch Centrum plaatsnemen. Demonstrator is een financieringsinstrument van het NWO-domein Toegepaste en Technisch Wetenschappen dat daarmee kansrijk technisch onderzoek stimuleert en faciliteert om tot een zogeheten minimaal werkbaar product te komen.
Neem bij vragen over de ReaSONS II Demo contact op met onderzoeker Cees Jeroen Bes via ceesjeroen.bes@inholland.nl.
De Gezonde Samenleving
Met dit project dragen docent-onderzoekers en studenten bij aan De Gezonde Samenleving, een profilerend thema van Hogeschool Inholland. Dit is een samenleving waarin burgers, bij fysieke, psychische en sociale problemen, een zo gezond en sociaal mogelijk leven leiden en kunnen participeren. Een samenleving waarin mensen in hun sociale omgeving centraal staan. Waarin professionals mensen – preventief en bij problemen – activeren en ondersteunen bij het ontwikkelen van zelfmanagement en empowerment. Deze professionals werken interprofessioneel en maken gebruik van de laatste (technologische) innovaties.
Acting on the potential of action potentials: will bioelectronic medicines be the next biologics?
Article in The Pharmaceutical Journal, 9 DEC 2016,
Bioelectronic medicine is a new approach to treating major chronic diseases that could give doctors and patients alternatives to costly mainstream medicine and may become as commonly prescribed as chemical or biological drugs. Some researchers and pharmaceutical companies are already taking this potential new class of treatments seriously and, as promising results emerge, others are expected to follow.
Imagine a prescription from your doctor, not for tablets but for a tiny electrical device implanted on a nerve in your neck. The device will monitor and treat your condition — whether it is diabetes, asthma, hypertension or even cancer — by modulating electrical impulses.
Pharmaceutical drugs can be highly effective, but don’t work for everyone. They tend to work systemically, often causing a variety of adverse effects, and rely on patient adherence. As a result, there are still countless chronic diseases that remain untreated or poorly treated by mainstream medicine. Enter bioelectronic medicines, a new group of therapies that work by transmitting electrical impulses along nerve fibres, rather than through molecular mechanisms. Tapping into the electrical wiring of the body, bioelectronic medicines — also called electroceuticals — could transform pharmaceutical treatment of many chronic diseases, providing an alternative or adjunct to traditional chemical or biological drugs. With technical advances and burgeoning research activity, this revolutionary approach to treating disease is starting to become a reality.
…
“Drugs are based on exercising the chemical component of our nervous systems and tend to act very globally. Electroceuticals act locally,” explains Wouter Serdijn, a bioelectronics researcher at Delft University of Technology in the Netherlands and University College London. “Moreover, contrary to drugs, electroceuticals have an instantaneous effect and their effect is reversible. It takes quite some time for drugs to [exert] their beneficial effect and, as a consequence, it takes quite some time to be able to administer the right dose.”
Source: Courtesy of Wouter Serdijn
Serdijn agrees: “I think pharma perceives electroceuticals as a game changer.”
U.S. Government Awards $20 Million for Electroceuticals Research
The U.S. National Institutes of Health (NIH) wants better ways to treat disease with electrical stimulation, and last week announced the recipients of more than US $20 million in funding for the field. The awards aim to improve maps of the peripheral nervous system—the body’s electrical wiring—and generate sophisticated systems that can hack into its codes.
The funding is part of a $248 million, seven-year program that the NIH Common Fund announced in 2014. Last week’s awards mark the start of the core of that program. Up to $39 million in additional awards will be announced next year. The agency will begin accepting applications for those awards by early 2017, says NIH’s Gene Civillico, who heads up the funding program, called SPARC, or Stimulating Peripheral Activity to Relieve Conditions.
Researchers have for decades been electrically stimulating the brain, the spinal cord and peripheral nerves in an attempt to alleviate ailments such as Parkinson’s disease, epilepsy, pain, and paralysis. The technique can work as well or better than drugs, leading some to dub the field “electroceuticals.” Several companies sell such devices with approval from the U.S. Food and Drug Administration (FDA).
Those tools have seen some success. In clinical studies they have been shown to reduce seizures and symptoms of rheumatoid arthritis, and help people regain bladder control and muscle mobility.
The tools on the market are surprisingly simplistic. In most systems, a pulse generator blindly sends electrical impulses along a lead to electrodes that are placed on a nerve. With enough intensity, the stimulation causes neurons to fire. Those induced impulses, called action potentials, are just like the ones produced naturally by the body. The signals travel along neural networks in different temporal patterns, communicating with the body and influencing chemical and biological processes.
The problem with current devices is that they shoot electrical impulses broadly at nerves in patterns that don’t begin to mimic the body’s natural code. It’s miraculous that the body responds at all to these crude signal patterns. And often the devices activate entire nerves, rather a subset of particular fiber groups, wasting battery power and creating side effects.
That leaves a lot of room for improvement—an exciting prospect for engineers. Many more diseases could be treated with electrical stimulation if the devices were designed more elegantly, say leaders in the field. New designs for electrodes and other tools must better interface with the body and activate nerves that are currently out of reach. And such tools must selectively activate key fibers within the nerve that perform specific functions, these leaders say.
To do that, we need a better understanding of the anatomy of neural circuits—where they are and what they do. We also need to know the precise signal patterns neural circuits use to communicate with organs. In other words, if we want to hack the system, we need maps and codes.
Those are the kinds of breakthroughs NIH Common Fund intends to stimulate with the awards. “We’re seeing a fair bit of clinical success, but with fairly primitive understanding of what the stimulation is actually doing,” says Civillico.
The awards focus on treating conditions such as heart disease, asthma and gastrointestinal disorders. The program’s leaders want researchers to focus on peripheral nerves—those that connect the brain and spinal cord with the rest of the body—because of their potential direct effects on organ systems and their accessibility. (The brain is far more complex, and harder to map.)
Vonken in de meterkast
De schokkende strijd tegen depressie, Parkinson en andere hersenziekten
Ons brein is een meterkast, een netwerk van kabels dat het lichaam van stroom voorziet. Soms ontstaat er kortsluiting – kabels slijten, stoppen slaan door – met hersenziekten als gevolg. Op dat moment kan elektriciteit uitkomst bieden. Depressie, Parkinson en chronische pijn; met een stroomstoot kunnen steeds meer mensen van hun klachten worden afgeholpen.
In Vonken in de meterkast laat Bart Lutters ons kennismaken met de fascinerende wereld van de neurostimulatie; van de allereerste vonk tot de nieuwste wetenschappelijke ontwikkelingen. Wie is er ooit op het idee gekomen om een patiënt onder stroom te zetten? Welke ziektes kunnen er met stroom behandeld worden? En wat doet zo’n stroomstoot eigenlijk met onze hersenen? Vonken in de meterkast gaat over elektrische vissen en op-afstand bestuurbare stieren, robotarmen en gereanimeerde ledematen, maar vooral over hoe stroom ons al duizenden jaren beter maakt.
Bart Lutters is zijn artsenopleiding aan het afronden (Selective Utrecht Medical Master) en wordt gefascineerd door alles wat met de hersenen te maken heeft. Hij heeft diverse prijzen gewonnen voor zijn onderzoek naar epilepsie en schrijft regelmatig over de geschiedenis van de geneeskunde in onder andere Brain, het toonaangevende wetenschappelijke tijdschrift op het gebied van de neurowetenschappen.
Vonken in de meterkast is vanaf 14 oktober verkrijgbaar in de betere boekhandel, ook online te bestellen via Bol.com.
Wouter Serdijn (hoogleraar bioelektronica aan de TU Delft) heeft middels interviews aan de inhoud van dit boek bijgedragen.
Living better with electroceuticals
by Harry Baggen, in Elektor Magazine, 30 maart 2016, 15:03
Electroceuticals can help combat a wide variety of medical conditions, such as tinnitus (ringing ears) and epilepsy. Electroceuticals comprise the smart, localized and targeted application of therapeutic electrical stimuli to the body. The technological challenge is to make electroceutical devices smarter and smaller.
According to Wouter Serdijn, Professor of Bio-Electronics at TU Delft in the Netherlands, electroceuticals could develop into a new and significant form of medicine, complementing existing pharmaceuticals. The targeted application of electrical stimuli can alleviate many medical conditions and is not limited to brain therapy. The main advantage of electroceuticals over pharmaceuticals is that the effect is localized. Drug act on the entire body, which can easily lead to adverse effects.
Existing electroceutical devices are still fairly bulky, with relatively large batteries and wires. There is also a high degree of trial and error in treatment methods. The aim is to develop a flexible brain implant on a polymer substrate that can serve as a general platform for various electroceutical devices.
—
Besser heilen mit „Electroceutica“
Electroceutica können helfen, verschiedene Erkrankungen wie Tinitus (Ohrpfeifen) oder Epilepsie zu lindern. Electroceutica bedeuten die intelligente, lokale und gezielte Verabreichung heilender elektrischer Impulse in den Körper. Die technische Herausforderung ist, die dafür erforderlichen Geräte kleiner und intelligenter zu machen.
Nach Wouter Serdijn, Professor für Bio-Elektronik an der niederländischen Technischen Universität Delft, können Electroceutica zu einem neuen bedeutenden medizinischen Mittel statt oder als Zusatz zur bestehenden Pharmazeutik werden. Die gezielte Anwendung elektrischer Impulse kann bei vielen Erkrankungen helfen, nicht nur bei solchen des Gehirns. Der große Vorteil der elektrischen Methode gegenüber der pharmazeutischen ist, dass sie lokal begrenzt sind: Pillen wirken auf den ganzen Körper ein und haben deswegen oft gravierende Nebenwirkungen.
Zurzeit ist die Verabreichung elektrischer Impulse an den Körper noch recht grobschlächtig mit relativ großen Batterien und Kabeln. Zudem funktioniert diese Methode noch in einem hohen Maß nach dem „Trial-and-error“-Prinzip. Das Ziel ist es, ein flexibles Hirnimplantat auf einem Polymersubstrat zu entwickeln, das zur allgemeinen Grundlage diverser Implantattypen werden kann.
—
Beter worden met ‘electroceutica’
Electroceutica kunnen helpen om allerlei aandoeningen zoals tinnitus (oorsuizen) en epilepsie te bestrijden. Electroceutica betreft het slim, lokaal en gericht toedienen van helende elektrische pulsen aan het lichaam. De technische uitdaging is het slimmer en kleiner maken van de benodigde apparatuur.
Volgens prof. Wouter Serdijn, hoogleraar bio-elektronica aan de TU Delft, kunnen ‘electroceutica’ uitgroeien tot een nieuw en belangrijk type medicijn, naast en als aanvulling op de al bestaande farmaceutica. Het gericht geven van elektrische pulsen kan bij veel aandoeningen helpen, en is niet alleen toepasbaar in de hersenen. Het grote voordeel van de elektrische methode boven farmaceutica is dat het effect lokaal is. Pillen werken in op het hele lichaam en veroorzaken derhalve snel bijwerkingen.
Op dit moment is het toedienen van elektrische pulsen aan het lichaam nog vrij grofstoffelijk, met bijvoorbeeld relatief grote batterijen en draden. Ook heeft de methode nog een vrij hoge graad van trial and error. Het streven is om een flexibel hersenimplantaat te ontwikkelen op een polymeer-substraat dat dan kan dienen als algemeen platform voor diverse typen implantaten.
Elektroceutica: elektronische medicijnimplantaten voor in je hoofd
Epilepsie, tinnitus en alcoholverslaving zijn misschien verschillend, de behandeling kan erg op elkaar lijken. En wel met elektrische medicijnen die je in je hoofd geïmplanteerd krijgt.
Hoogleraar bio-elektronica Wouter Serdijn houdt morgen zijn intree-rede over electroceutica aan de TU Delft. Het woord stamt af van het Engelse ‘electroceuticals’, de elektronische tegenhanger van de ‘pharmaceuticals’, medicijnen dus. Maar dan met een batterijtje erin die de patiënt als implantaat krijgt, meestal in de hersenen.
“Een bekende ziekte is Parkinson. Dan ontstaan tremoren. Die kun je onderdrukken met kleine, elektrische pulsjes. In de arm kun je het ook behandelen, maar dan behandel je de oorzaak niet, zegt Serdijn. “Vaak gaan tremoren gepaard met de aansturing van heel veel verschillende spieren. Dan zou je iemand moeten behangen met elektronica om de plaats waarop het zich openbaart de symptomen te onderdrukken.”
In de toekomst hoopt Serdijn de implantaten kleiner, draadloos en slimmer te maken: “Dat ze echt luisteren naar wat de patiënt nodig heeft”, legt Serdijn uit.
Klik hier voor de link naar het item op BNR Nieuwsradio: http://www.bnr.nl/?service=player&type=archief&fragment=20160330065325240
Slimme stroomstootjes als medicijn
Kleine, draadloze en intelligente implantaten die werken als elektronisch medicijn, dat is de droom van Wouter Serdijn. Serdijn hield deze week aan de TU Delft zijn intreerede als hoogleraar bio-electronica. Hij noemt zulke implantaten ‘electroceuticals’, als tegenhanger van de ‘farmaceuticals’, ofwel pilletjes. Het idee is eenvoudig: waar pilletjes de biochemische activiteit van lichaamscellen veranderen, veranderen electroceuticals de elektrische activiteit.
De moleculen uit een pilletje komen via de bloedbaan in het hele lichaam terecht. De effecten treden niet direct op, zijn niet lokaal en ook niet meteen omkeerbaar. Bovendien hebben pilletjes vaak ongewenste bijeffecten. Maar eeuwenlang was er geen andere mogelijkheid.
Micro-electronica heeft hier verandering in gebracht. Zo kunnen sinds een jaar of tien patiënten met ernstige Parkinson of depressie behandeld worden met een hersenimplantaat dat lokaal in de hersenen elektrische pulsjes genereert. ‘Deze implantaten hebben echter flink wat nadelen’, vertelt Serdijn een dag voor zijn oratie. ‘Ze zijn groot en hebben ook nog eens een grote batterij nodig, typisch iets van zes bij vier bij één centimeter. De batterij wordt nu nog in de borstkas aangebracht. Via draadjes loopt de stroom naar het implantaat in de hersenen. Die draadjes zitten eigenlijk in de weg. Een ander nadeel is dat het implantaat zelf dom is. Arts en de patiënt moeten samen de beste instelling zien te ontdekken. Maar dat is vaak moeilijk en subjectief.’
Chips met een luisterend oor
Serdijn ontwikkelt microchips voor implantaten die niet alleen klein en draadloos zijn, maar ook intelligent: ‘Onze chips zijn slechts twee bij twee millimeter groot, vooral doordat we de pulsgenerator veel kleiner hebben kunnen maken. Ze verbruiken veel minder stroom en daardoor volstaat een kleinere batterij. Bovendien is de batterij oplaadbaar. Ik stel me voor dat deze in de toekomst draadloos wordt opgeladen door een spoel in een intelligent kussen, terwijl de patiënt ligt te slapen.’
Nieuw is dat de chip lokaal luistert naar de therapeutische behoefte en daarop zijn gegenereerde pulsen afstemt. Serdijn geeft het voorbeeld van de behandeling van oorsuizen: ‘Bij sommige patiënten onderdrukken elektrische pulsen de klachten. Nu gebeurt die behandeling nog subjectief. De patiënt moet zelf aangeven wat hij hoort en of er verlichting is opgetreden. Een slim implantaat meet het signaal op de gehoorschors, genereert elektrische pulsjes en meet tegelijkertijd hoe goed het effect is. Idealiter werkt het implantaat alleen op de momenten dat het nodig is en in de hoeveelheid die nodig is. Het implantaat denkt als het ware mee. Electroceuticals houden automatisch rekening met het feit dat ieder mens anders is en dat de toestand van een persoon in de tijd verandert.’
Fijnregelen met schokjes
Behandeling met slimme stroomstootjes hebben de eerste positieve resultaten opgeleverd in de behandeling van epilepsie bij muizen. Serdijn werkt ook samen met de Belgische hoogleraar neurowetenschappen Dirk de Ridder in de behandeling van alcoholverslaving. De implantaten hoeven ook niet beperkt te blijven tot de hersenen, zegt Serdijn. ‘Elk weefsel dat gevoelig is voor elektriciteit, dus ook spieren en organen, kun je met electroceuticals beïnvloeden. Een paar jaar geleden is bijvoorbeeld aangetoond dat elektrische stimulatie ook een aandoening als reuma kan onderdrukken.’
Serdijn ziet electroceutica niet als vervangers van de klassieke farmaceutica, maar als aanvulling. ‘Electroceutica zijn vooral geschikt voor aandoeningen die hun oorsprong op een specifieke plek vinden. Met farmaceutica kun je als het ware de biochemische basiswaarde van het lichaam veranderen en daarna kun je heel lokaal met electroceutica de boel fijnregelen.’
Op dit moment zit het onderzoek naar electroceutica nog in de fase van dierproeven. ‘Voordat hier goedgekeurde behandelingen voor mensen uit komen, zijn we jaren verder’, besluit Serdijn.
Bennie Mols vertelde ook over dit onderwerp in het radioprogramma De Ochtend: Stroomstootjes in plaats van pillen
Beter worden met ‘electroceutica’
Minder bijwerkingen
Volgens prof. Wouter Serdijn kunnen ‘electroceutica’ uitgroeien tot een nieuw en belangrijk type medicijn, naast en als aanvulling op de al bestaande farmaceutica. Werken farmaceutica op een chemische wijze in op het lichaam, electroceutica doen dit op een elektrische manier.
Electroceutica dienen helende elektrische pulsen aan het lichaam toe op een slimme en gerichte wijze, vooral voor aandoeningen die hun oorsprong vinden op specifieke plaatsen, in bijvoorbeeld de hersenen.Het gericht geven van elektrische pulsen kan bij veel aandoeningen helpen, en is zeker niet alleen toepasbaar in de hersenen. Het grote voordeel van de elektrische methode boven farmaceutica is dat het effect lokaal is. Pillen werken immers in op het hele lichaam en veroorzaken derhalve snel bijwerkingen.
Slimmer en kleiner
Serdijn ziet electroceutica nadrukkelijk als aanvulling op ‘gewone’ medicijnen. ‘Het gaat om het vinden van de perfecte combinatie tussen electroceuticals en conventionele medicatie. Op dit moment is het toedienen van elektrische pulsen aan het lichaam nog vrij grofstoffelijk, met bijvoorbeeld relatief grote batterijen en draden. Ook heeft de methode nog een vrij hoge graad van trial and error.’
Een chip in zijn meet-behuizing voor het uitlezen van de neurale signalen tijdens en direct na het elektrisch stimuleren, door Cees-Jeroen Bes, in samenwerking met LUMC-KNO. Ondersteund door STW, TMSi, AB-Sys and HealthTech.
Er zijn daarom twee technische hoofddoelen, zegt Serdijn. ‘De uitdaging is het kleiner (dus ook makkelijker implanteerbaar) én slimmer maken van de apparatuur. Dat slimmere zit hem vooral in het meten van de toestand van en het aanpassen van de therapie aan een individuele patiënt. Dit patiënt-specifieke element is heel belangrijk. Want niet alleen is iedere patiënt anders, de toestand van iedere individuele patiënt varieert ook nog eens in de tijd. Door dit te meten en terug te koppelen kunnen we veel gerichter de juiste therapie instellen.’
Concreet is het doel om een flexibel hersenimplantaat te ontwikkelen op een polymeer-substraat. Dat implantaat dient dan als algemeen platform voor diverse typen implantaten.
Tinnitus
Volgens Serdijn is het (potentiële) toepassingsgebied van electroceutica zeer breed. ‘Het kan bijvoorbeeld worden ingezet voor de behandeling van onder meer tinnitus (oorsuizen), epilepsie, het syndroom van Tourette en bepaalde verslavingen. Op deze gebieden worden nu ook al successen geboekt.’
‘Neem tinnitus als voorbeeld. Wereldwijd hebben meer dan 500 miljoen mensen hier last van. Sommige patiënten kunnen worden geholpen via elektrische pulsen. Nu gebeurt die behandeling nog subjectief’, zegt Serdijn. ‘De patiënt moet zelf aangeven wat hij hoort en of er enige verlichting als gevolg van de stimulatie is opgetreden. Intelligente electroceuticals kunnen de doelmatigheid van de toegepaste therapie continu monitoren en deze aanpassen aan de behoeften van de patiënt, zelfs wanneer deze alweer op de terugweg is van het ziekenhuis.’
Symposium
Uiteraard vinden de technische ontwikkelingen plaats in nauwe samenwerking met artsen. Dit komt ook tot uiting in het symposium dat op de dag van de intreerede van Serdijn wordt gehouden. Medical Delta partners ErasmusMC en LUMC zijn goed vertegenwoordigd in het programma. Tijdens het symposium wordt bio-elektronica besproken vanuit een technologisch, een medisch, een klinisch, een industrieel en een maatschappelijk perspectief. Vijf vooraanstaande sprekers van het ErasmusMC, het LUMC, de Dunedin School of Medicine en een biomedisch bedrijf behandelen deze thema’s.
Meer informatie
Het symposium en de intreerede van prof. Serdijn.
Het symposium en de intreerede van prof. Serdijn.
Opname van de intreerede: https://collegerama.tudelft.nl/Mediasite/Play/429e2a53dfad4409803b57fff90a53031d
De afdeling Bioelectronics van de TU Delft.
Informatie over prof. Wouter Serdijn.
De afdeling Bioelectronics van de TU Delft.
Informatie over prof. Wouter Serdijn.
Contact
Wouter Serdijn, prof. bio-elektronica TU Delft, W.A.Serdijn@tudelft.nl, +31 (0)15 278 1715.
Claire Hallewas, persvoorlichter TU Delft, c.r.hallewas@tudelft.nl, +31 (0)6 4095 3085.
Wouter Serdijn, prof. bio-elektronica TU Delft, W.A.Serdijn@tudelft.nl, +31 (0)15 278 1715.
Claire Hallewas, persvoorlichter TU Delft, c.r.hallewas@tudelft.nl, +31 (0)6 4095 3085.